{"title":"正则语言的单调性表征","authors":"Yoav Feinstein, Orna Kupferman","doi":"10.1016/j.ic.2025.105360","DOIUrl":null,"url":null,"abstract":"<div><div>Each language <span><math><mi>L</mi><mo>⊆</mo><msup><mrow><mi>Σ</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> induces an infinite sequence <span><math><msubsup><mrow><mo>{</mo><mi>P</mi><mi>r</mi><mo>(</mo><mi>L</mi><mo>,</mo><mi>n</mi><mo>)</mo><mo>}</mo></mrow><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mrow><mo>∞</mo></mrow></msubsup></math></span>, where for all <span><math><mi>n</mi><mo>≥</mo><mn>1</mn></math></span>, the value <span><math><mi>P</mi><mi>r</mi><mo>(</mo><mi>L</mi><mo>,</mo><mi>n</mi><mo>)</mo><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></math></span> is the probability of a word of length <em>n</em> to be in <em>L</em>, assuming a uniform distribution on the letters in Σ. Previous studies of <span><math><msubsup><mrow><mo>{</mo><mi>P</mi><mi>r</mi><mo>(</mo><mi>L</mi><mo>,</mo><mi>n</mi><mo>)</mo><mo>}</mo></mrow><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mrow><mo>∞</mo></mrow></msubsup></math></span> for a regular language <em>L</em>, concerned zero-one laws, density, and accumulation points. We study monotonicity of <span><math><msubsup><mrow><mo>{</mo><mi>P</mi><mi>r</mi><mo>(</mo><mi>L</mi><mo>,</mo><mi>n</mi><mo>)</mo><mo>}</mo></mrow><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mrow><mo>∞</mo></mrow></msubsup></math></span>, possibly in the limit. We show that monotonicity may depend on the distribution of letters, study how operations on languages affect monotonicity, and characterize classes of languages for which the sequence is monotonic. We extend the study to languages <em>L</em> of infinite words, where we study the probability of lasso-shaped words to be in <em>L</em> and consider two definitions for <span><math><mi>P</mi><mi>r</mi><mo>(</mo><mi>L</mi><mo>,</mo><mi>n</mi><mo>)</mo></math></span>. The first refers to the probability of prefixes of length <em>n</em> to be extended to words in <em>L</em>, and the second to the probability of word <em>w</em> of length <em>n</em> to be such that <span><math><msup><mrow><mi>w</mi></mrow><mrow><mi>ω</mi></mrow></msup></math></span> is in <em>L</em>. Thus, in the second definition, monotonicity depends not only on the length of <em>w</em>, but also on the words being periodic. We also study the complexity of calculating <span><math><mi>P</mi><mi>r</mi><mo>(</mo><mi>L</mi><mo>,</mo><mi>n</mi><mo>)</mo></math></span> for the various definitions.</div></div>","PeriodicalId":54985,"journal":{"name":"Information and Computation","volume":"307 ","pages":"Article 105360"},"PeriodicalIF":1.0000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Monotonicity characterizations of regular languages\",\"authors\":\"Yoav Feinstein, Orna Kupferman\",\"doi\":\"10.1016/j.ic.2025.105360\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Each language <span><math><mi>L</mi><mo>⊆</mo><msup><mrow><mi>Σ</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> induces an infinite sequence <span><math><msubsup><mrow><mo>{</mo><mi>P</mi><mi>r</mi><mo>(</mo><mi>L</mi><mo>,</mo><mi>n</mi><mo>)</mo><mo>}</mo></mrow><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mrow><mo>∞</mo></mrow></msubsup></math></span>, where for all <span><math><mi>n</mi><mo>≥</mo><mn>1</mn></math></span>, the value <span><math><mi>P</mi><mi>r</mi><mo>(</mo><mi>L</mi><mo>,</mo><mi>n</mi><mo>)</mo><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></math></span> is the probability of a word of length <em>n</em> to be in <em>L</em>, assuming a uniform distribution on the letters in Σ. Previous studies of <span><math><msubsup><mrow><mo>{</mo><mi>P</mi><mi>r</mi><mo>(</mo><mi>L</mi><mo>,</mo><mi>n</mi><mo>)</mo><mo>}</mo></mrow><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mrow><mo>∞</mo></mrow></msubsup></math></span> for a regular language <em>L</em>, concerned zero-one laws, density, and accumulation points. We study monotonicity of <span><math><msubsup><mrow><mo>{</mo><mi>P</mi><mi>r</mi><mo>(</mo><mi>L</mi><mo>,</mo><mi>n</mi><mo>)</mo><mo>}</mo></mrow><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mrow><mo>∞</mo></mrow></msubsup></math></span>, possibly in the limit. We show that monotonicity may depend on the distribution of letters, study how operations on languages affect monotonicity, and characterize classes of languages for which the sequence is monotonic. We extend the study to languages <em>L</em> of infinite words, where we study the probability of lasso-shaped words to be in <em>L</em> and consider two definitions for <span><math><mi>P</mi><mi>r</mi><mo>(</mo><mi>L</mi><mo>,</mo><mi>n</mi><mo>)</mo></math></span>. The first refers to the probability of prefixes of length <em>n</em> to be extended to words in <em>L</em>, and the second to the probability of word <em>w</em> of length <em>n</em> to be such that <span><math><msup><mrow><mi>w</mi></mrow><mrow><mi>ω</mi></mrow></msup></math></span> is in <em>L</em>. Thus, in the second definition, monotonicity depends not only on the length of <em>w</em>, but also on the words being periodic. We also study the complexity of calculating <span><math><mi>P</mi><mi>r</mi><mo>(</mo><mi>L</mi><mo>,</mo><mi>n</mi><mo>)</mo></math></span> for the various definitions.</div></div>\",\"PeriodicalId\":54985,\"journal\":{\"name\":\"Information and Computation\",\"volume\":\"307 \",\"pages\":\"Article 105360\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information and Computation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0890540125000963\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information and Computation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0890540125000963","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Monotonicity characterizations of regular languages
Each language induces an infinite sequence , where for all , the value is the probability of a word of length n to be in L, assuming a uniform distribution on the letters in Σ. Previous studies of for a regular language L, concerned zero-one laws, density, and accumulation points. We study monotonicity of , possibly in the limit. We show that monotonicity may depend on the distribution of letters, study how operations on languages affect monotonicity, and characterize classes of languages for which the sequence is monotonic. We extend the study to languages L of infinite words, where we study the probability of lasso-shaped words to be in L and consider two definitions for . The first refers to the probability of prefixes of length n to be extended to words in L, and the second to the probability of word w of length n to be such that is in L. Thus, in the second definition, monotonicity depends not only on the length of w, but also on the words being periodic. We also study the complexity of calculating for the various definitions.
期刊介绍:
Information and Computation welcomes original papers in all areas of theoretical computer science and computational applications of information theory. Survey articles of exceptional quality will also be considered. Particularly welcome are papers contributing new results in active theoretical areas such as
-Biological computation and computational biology-
Computational complexity-
Computer theorem-proving-
Concurrency and distributed process theory-
Cryptographic theory-
Data base theory-
Decision problems in logic-
Design and analysis of algorithms-
Discrete optimization and mathematical programming-
Inductive inference and learning theory-
Logic & constraint programming-
Program verification & model checking-
Probabilistic & Quantum computation-
Semantics of programming languages-
Symbolic computation, lambda calculus, and rewriting systems-
Types and typechecking