{"title":"有效的粒子生成深度平均和完全3D MPM使用TIFF图像数据","authors":"Marco Fois, Carlo de Falco, Luca Formaggia","doi":"10.1016/j.matcom.2025.10.008","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, we present a comprehensive framework for the generation and efficient management of particles in both fully three-dimensional (3D) and depth-averaged Material Point Method (DAMPM) simulations. Our approach leverages TIFF image data to construct initial conditions for large-scale geophysical flows, with a primary focus on landslide modeling. We describe the algorithms developed for particle initialization, distribution, and tracking, ensuring consistency and computational efficiency across different MPM formulations. The proposed methods enable accurate representation of complex topographies while maintaining numerical stability and adaptability to diverse material behaviors. Although the primary application is landslide simulation, the methodologies outlined are broadly applicable to other fields involving granular flows, fluid–structure interactions, and large-deformation processes. Performance evaluations demonstrate the efficiency and robustness of our approach, highlighting its potential for advancing high-fidelity simulations in geomechanics and beyond.</div></div>","PeriodicalId":49856,"journal":{"name":"Mathematics and Computers in Simulation","volume":"241 ","pages":"Pages 117-136"},"PeriodicalIF":4.4000,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient particle generation for depth-averaged and fully 3D MPM using TIFF image data\",\"authors\":\"Marco Fois, Carlo de Falco, Luca Formaggia\",\"doi\":\"10.1016/j.matcom.2025.10.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this work, we present a comprehensive framework for the generation and efficient management of particles in both fully three-dimensional (3D) and depth-averaged Material Point Method (DAMPM) simulations. Our approach leverages TIFF image data to construct initial conditions for large-scale geophysical flows, with a primary focus on landslide modeling. We describe the algorithms developed for particle initialization, distribution, and tracking, ensuring consistency and computational efficiency across different MPM formulations. The proposed methods enable accurate representation of complex topographies while maintaining numerical stability and adaptability to diverse material behaviors. Although the primary application is landslide simulation, the methodologies outlined are broadly applicable to other fields involving granular flows, fluid–structure interactions, and large-deformation processes. Performance evaluations demonstrate the efficiency and robustness of our approach, highlighting its potential for advancing high-fidelity simulations in geomechanics and beyond.</div></div>\",\"PeriodicalId\":49856,\"journal\":{\"name\":\"Mathematics and Computers in Simulation\",\"volume\":\"241 \",\"pages\":\"Pages 117-136\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics and Computers in Simulation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378475425004252\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics and Computers in Simulation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378475425004252","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Efficient particle generation for depth-averaged and fully 3D MPM using TIFF image data
In this work, we present a comprehensive framework for the generation and efficient management of particles in both fully three-dimensional (3D) and depth-averaged Material Point Method (DAMPM) simulations. Our approach leverages TIFF image data to construct initial conditions for large-scale geophysical flows, with a primary focus on landslide modeling. We describe the algorithms developed for particle initialization, distribution, and tracking, ensuring consistency and computational efficiency across different MPM formulations. The proposed methods enable accurate representation of complex topographies while maintaining numerical stability and adaptability to diverse material behaviors. Although the primary application is landslide simulation, the methodologies outlined are broadly applicable to other fields involving granular flows, fluid–structure interactions, and large-deformation processes. Performance evaluations demonstrate the efficiency and robustness of our approach, highlighting its potential for advancing high-fidelity simulations in geomechanics and beyond.
期刊介绍:
The aim of the journal is to provide an international forum for the dissemination of up-to-date information in the fields of the mathematics and computers, in particular (but not exclusively) as they apply to the dynamics of systems, their simulation and scientific computation in general. Published material ranges from short, concise research papers to more general tutorial articles.
Mathematics and Computers in Simulation, published monthly, is the official organ of IMACS, the International Association for Mathematics and Computers in Simulation (Formerly AICA). This Association, founded in 1955 and legally incorporated in 1956 is a member of FIACC (the Five International Associations Coordinating Committee), together with IFIP, IFAV, IFORS and IMEKO.
Topics covered by the journal include mathematical tools in:
•The foundations of systems modelling
•Numerical analysis and the development of algorithms for simulation
They also include considerations about computer hardware for simulation and about special software and compilers.
The journal also publishes articles concerned with specific applications of modelling and simulation in science and engineering, with relevant applied mathematics, the general philosophy of systems simulation, and their impact on disciplinary and interdisciplinary research.
The journal includes a Book Review section -- and a "News on IMACS" section that contains a Calendar of future Conferences/Events and other information about the Association.