基于深度神经网络的超声速/高超声速压缩坡道激波与边界层相互作用预测

IF 5.8 1区 工程技术 Q1 ENGINEERING, AEROSPACE
Yuan Jia , Zhengtong Li , Chi Zhang , Hao Ma , Jiaao Hao , Chih-Yung Wen
{"title":"基于深度神经网络的超声速/高超声速压缩坡道激波与边界层相互作用预测","authors":"Yuan Jia ,&nbsp;Zhengtong Li ,&nbsp;Chi Zhang ,&nbsp;Hao Ma ,&nbsp;Jiaao Hao ,&nbsp;Chih-Yung Wen","doi":"10.1016/j.ast.2025.110976","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the accurate prediction of supersonic and hypersonic flow fields over a compression ramp using deep neural networks. While deep learning methods have demonstrated effectiveness in flow field prediction, challenges remain in resolving fine-scale features characteristic of supersonic and hypersonic flows, such as <span><math><mrow><mi>S</mi><mi>h</mi><mi>o</mi><mi>c</mi><mi>k</mi></mrow></math></span> <span><math><mrow><mi>W</mi><mi>a</mi><mi>v</mi><mi>e</mi></mrow></math></span> <span><math><mrow><mi>B</mi><mi>o</mi><mi>u</mi><mi>n</mi><mi>d</mi><mi>a</mi><mi>r</mi><mi>y</mi></mrow></math></span> <span><math><mrow><mi>L</mi><mi>a</mi><mi>y</mi><mi>e</mi><mi>r</mi></mrow></math></span> <span><math><mrow><mi>I</mi><mi>n</mi><mi>t</mi><mi>e</mi><mi>r</mi><mi>a</mi><mi>c</mi><mi>t</mi><mi>i</mi><mi>o</mi><mi>n</mi></mrow></math></span> (SWBLI). To address this, a flow field modeling method using <span><math><mrow><mi>V</mi><mi>i</mi><mi>s</mi><mi>i</mi><mi>o</mi><mi>n</mi></mrow></math></span> <span><math><mrow><mi>T</mi><mi>r</mi><mi>a</mi><mi>n</mi><mi>s</mi><mi>f</mi><mi>o</mi><mi>r</mi><mi>m</mi><mi>e</mi><mi>r</mi></mrow></math></span> (ViT) and U-Net <span><math><mrow><mi>C</mi><mi>o</mi><mi>n</mi><mi>v</mi><mi>o</mi><mi>l</mi><mi>u</mi><mi>t</mi><mi>i</mi><mi>o</mi><mi>n</mi><mi>a</mi><mi>l</mi></mrow></math></span> <span><math><mrow><mi>N</mi><mi>e</mi><mi>u</mi><mi>r</mi><mi>a</mi><mi>l</mi></mrow></math></span> <span><math><mrow><mi>N</mi><mi>e</mi><mi>t</mi><mi>w</mi><mi>o</mi><mi>r</mi><mi>k</mi></mrow></math></span> (CNN) based on the coordinate transformation is employed. This strategy reduces information loss near the wall region and enhances the prediction accuracy of boundary layer flow fields. Meanwhile, a comparative analysis between the two surrogate models reveals that ViT outperforms U-Net CNN applied in this study, achieving reductions in errors of 72.6 % and 69.5 % for streamwise and normal velocities, respectively. Furthermore, physics-informed loss functions – including wavelet loss and pressure gradient-related loss – are introduced to improve prediction accuracy in shock-induced boundary layer separation and reattachment regions. The results demonstrate that models incorporating physics-informed losses capture more detailed flow features; however, discontinuities between adjacent patches still impose limitations on accuracy. To overcome this, the proposed patch prior method effectively addresses patch discontinuity issues, enabling accurate wall pressure predictions while maintaining a separation length error of approximately 6 % compared to <span><math><mrow><mi>C</mi><mi>o</mi><mi>m</mi><mi>p</mi><mi>u</mi><mi>t</mi><mi>a</mi><mi>t</mi><mi>i</mi><mi>o</mi><mi>n</mi><mi>a</mi><mi>l</mi></mrow></math></span> <span><math><mrow><mi>F</mi><mi>l</mi><mi>u</mi><mi>i</mi><mi>d</mi></mrow></math></span> <span><math><mrow><mi>D</mi><mi>y</mi><mi>n</mi><mi>a</mi><mi>m</mi><mi>i</mi><mi>c</mi><mi>s</mi></mrow></math></span> (CFD) results. Overall, the findings indicate that the developed model possesses strong capability in predicting supersonic and hypersonic flow fields over compression ramps.</div></div>","PeriodicalId":50955,"journal":{"name":"Aerospace Science and Technology","volume":"168 ","pages":"Article 110976"},"PeriodicalIF":5.8000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of shock and boundary layer interaction in supersonic/hypersonic flow over a compression ramp using deep neural networks\",\"authors\":\"Yuan Jia ,&nbsp;Zhengtong Li ,&nbsp;Chi Zhang ,&nbsp;Hao Ma ,&nbsp;Jiaao Hao ,&nbsp;Chih-Yung Wen\",\"doi\":\"10.1016/j.ast.2025.110976\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study investigates the accurate prediction of supersonic and hypersonic flow fields over a compression ramp using deep neural networks. While deep learning methods have demonstrated effectiveness in flow field prediction, challenges remain in resolving fine-scale features characteristic of supersonic and hypersonic flows, such as <span><math><mrow><mi>S</mi><mi>h</mi><mi>o</mi><mi>c</mi><mi>k</mi></mrow></math></span> <span><math><mrow><mi>W</mi><mi>a</mi><mi>v</mi><mi>e</mi></mrow></math></span> <span><math><mrow><mi>B</mi><mi>o</mi><mi>u</mi><mi>n</mi><mi>d</mi><mi>a</mi><mi>r</mi><mi>y</mi></mrow></math></span> <span><math><mrow><mi>L</mi><mi>a</mi><mi>y</mi><mi>e</mi><mi>r</mi></mrow></math></span> <span><math><mrow><mi>I</mi><mi>n</mi><mi>t</mi><mi>e</mi><mi>r</mi><mi>a</mi><mi>c</mi><mi>t</mi><mi>i</mi><mi>o</mi><mi>n</mi></mrow></math></span> (SWBLI). To address this, a flow field modeling method using <span><math><mrow><mi>V</mi><mi>i</mi><mi>s</mi><mi>i</mi><mi>o</mi><mi>n</mi></mrow></math></span> <span><math><mrow><mi>T</mi><mi>r</mi><mi>a</mi><mi>n</mi><mi>s</mi><mi>f</mi><mi>o</mi><mi>r</mi><mi>m</mi><mi>e</mi><mi>r</mi></mrow></math></span> (ViT) and U-Net <span><math><mrow><mi>C</mi><mi>o</mi><mi>n</mi><mi>v</mi><mi>o</mi><mi>l</mi><mi>u</mi><mi>t</mi><mi>i</mi><mi>o</mi><mi>n</mi><mi>a</mi><mi>l</mi></mrow></math></span> <span><math><mrow><mi>N</mi><mi>e</mi><mi>u</mi><mi>r</mi><mi>a</mi><mi>l</mi></mrow></math></span> <span><math><mrow><mi>N</mi><mi>e</mi><mi>t</mi><mi>w</mi><mi>o</mi><mi>r</mi><mi>k</mi></mrow></math></span> (CNN) based on the coordinate transformation is employed. This strategy reduces information loss near the wall region and enhances the prediction accuracy of boundary layer flow fields. Meanwhile, a comparative analysis between the two surrogate models reveals that ViT outperforms U-Net CNN applied in this study, achieving reductions in errors of 72.6 % and 69.5 % for streamwise and normal velocities, respectively. Furthermore, physics-informed loss functions – including wavelet loss and pressure gradient-related loss – are introduced to improve prediction accuracy in shock-induced boundary layer separation and reattachment regions. The results demonstrate that models incorporating physics-informed losses capture more detailed flow features; however, discontinuities between adjacent patches still impose limitations on accuracy. To overcome this, the proposed patch prior method effectively addresses patch discontinuity issues, enabling accurate wall pressure predictions while maintaining a separation length error of approximately 6 % compared to <span><math><mrow><mi>C</mi><mi>o</mi><mi>m</mi><mi>p</mi><mi>u</mi><mi>t</mi><mi>a</mi><mi>t</mi><mi>i</mi><mi>o</mi><mi>n</mi><mi>a</mi><mi>l</mi></mrow></math></span> <span><math><mrow><mi>F</mi><mi>l</mi><mi>u</mi><mi>i</mi><mi>d</mi></mrow></math></span> <span><math><mrow><mi>D</mi><mi>y</mi><mi>n</mi><mi>a</mi><mi>m</mi><mi>i</mi><mi>c</mi><mi>s</mi></mrow></math></span> (CFD) results. Overall, the findings indicate that the developed model possesses strong capability in predicting supersonic and hypersonic flow fields over compression ramps.</div></div>\",\"PeriodicalId\":50955,\"journal\":{\"name\":\"Aerospace Science and Technology\",\"volume\":\"168 \",\"pages\":\"Article 110976\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aerospace Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1270963825010399\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1270963825010399","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了利用深度神经网络对超声速和高超声速压缩坡道流场的精确预测。虽然深度学习方法在流场预测方面已经证明了有效性,但在解决超声速和高超声速流动的精细尺度特征方面仍然存在挑战,例如激波边界层相互作用(SWBLI)。为此,采用基于坐标变换的视觉变换(Vision Transformer, ViT)和U-Net卷积神经网络(Convolutional Neural Network, CNN)相结合的流场建模方法。该策略减少了壁面附近的信息损失,提高了边界层流场的预测精度。同时,两种替代模型之间的对比分析表明,ViT优于本研究中应用的U-Net CNN,对流向和法向速度的误差分别降低了72.6%和69.5%。此外,引入了物理信息损失函数-包括小波损失和压力梯度相关损失-以提高激波诱导边界层分离和再附着区域的预测精度。结果表明,考虑物理损失的模型能够捕捉到更详细的流动特征;然而,相邻斑块之间的不连续性仍然限制了精度。为了克服这一问题,提出的补片先验方法有效地解决了补片不连续性问题,与计算流体动力学(CFD)结果相比,能够准确预测管壁压力,同时保持约6%的分离长度误差。结果表明,所建立的模型具有较强的超声速和高超声速压缩坡道流场预测能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prediction of shock and boundary layer interaction in supersonic/hypersonic flow over a compression ramp using deep neural networks
This study investigates the accurate prediction of supersonic and hypersonic flow fields over a compression ramp using deep neural networks. While deep learning methods have demonstrated effectiveness in flow field prediction, challenges remain in resolving fine-scale features characteristic of supersonic and hypersonic flows, such as Shock Wave Boundary Layer Interaction (SWBLI). To address this, a flow field modeling method using Vision Transformer (ViT) and U-Net Convolutional Neural Network (CNN) based on the coordinate transformation is employed. This strategy reduces information loss near the wall region and enhances the prediction accuracy of boundary layer flow fields. Meanwhile, a comparative analysis between the two surrogate models reveals that ViT outperforms U-Net CNN applied in this study, achieving reductions in errors of 72.6 % and 69.5 % for streamwise and normal velocities, respectively. Furthermore, physics-informed loss functions – including wavelet loss and pressure gradient-related loss – are introduced to improve prediction accuracy in shock-induced boundary layer separation and reattachment regions. The results demonstrate that models incorporating physics-informed losses capture more detailed flow features; however, discontinuities between adjacent patches still impose limitations on accuracy. To overcome this, the proposed patch prior method effectively addresses patch discontinuity issues, enabling accurate wall pressure predictions while maintaining a separation length error of approximately 6 % compared to Computational Fluid Dynamics (CFD) results. Overall, the findings indicate that the developed model possesses strong capability in predicting supersonic and hypersonic flow fields over compression ramps.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Aerospace Science and Technology
Aerospace Science and Technology 工程技术-工程:宇航
CiteScore
10.30
自引率
28.60%
发文量
654
审稿时长
54 days
期刊介绍: Aerospace Science and Technology publishes articles of outstanding scientific quality. Each article is reviewed by two referees. The journal welcomes papers from a wide range of countries. This journal publishes original papers, review articles and short communications related to all fields of aerospace research, fundamental and applied, potential applications of which are clearly related to: • The design and the manufacture of aircraft, helicopters, missiles, launchers and satellites • The control of their environment • The study of various systems they are involved in, as supports or as targets. Authors are invited to submit papers on new advances in the following topics to aerospace applications: • Fluid dynamics • Energetics and propulsion • Materials and structures • Flight mechanics • Navigation, guidance and control • Acoustics • Optics • Electromagnetism and radar • Signal and image processing • Information processing • Data fusion • Decision aid • Human behaviour • Robotics and intelligent systems • Complex system engineering. Etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信