Ikram Ul Haq , Saira Shukat , Ikram Ullah , Waqar Ul Hassan , Hong-Na Zhang , Xiao-Bin Li , Feng-Chen Li
{"title":"基于Levenberg-Marquardt反向传播算法的磁流体微极纳米流体分层智能计算","authors":"Ikram Ul Haq , Saira Shukat , Ikram Ullah , Waqar Ul Hassan , Hong-Na Zhang , Xiao-Bin Li , Feng-Chen Li","doi":"10.1016/j.jocs.2025.102727","DOIUrl":null,"url":null,"abstract":"<div><div>The magnetohydrodynamic (MHD) micropolar nanofluid with stratification is evaluated in this work by integrated numerical computing using the Levenberg Marquardt backpropagation (LMBB) optimization technique, an artificial neural network (ANN) approach. After that, model is condensed to a set of problems with boundary values, which are resolved utilizing the proposed method LMBB algorithm and a numerical technique BVP4c. The LMBB approach is an iterative approach for figuring out the least of a function that is not linear, is distinct as the addition of squares. The outcomes are also cross-checked against those of earlier studies and the MATLAB’s BVP4c solver for validation. The mapping of velocity, concentration and temperature profiles from the input to results is another use of neural networking. These results show the accuracy level of the predictions and improvements made by ANN. To generalize a dataset, the BVP4c techniques’ performance is utilized to lower error of mean square. Data based on the ratio of training (80 %), validation (10 %) and testing (10 %) is used by the ANN-based LMBB backpropagation optimization technique. Histograms and function fitness are utilized to verify the algorithm’s dependability. For fluid dynamics, numerical methods and ANN perform incredibly well together, and this could result in new developments across a wide range of fields. The results of this study may aid in the optimization of fluid systems, leading to higher productivity and efficiency in a range of engineering applications.</div></div>","PeriodicalId":48907,"journal":{"name":"Journal of Computational Science","volume":"92 ","pages":"Article 102727"},"PeriodicalIF":3.7000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intelligent computing for magnetohydrodynamic micropolar nanofluid with stratification using Levenberg–Marquardt backpropagation algorithm\",\"authors\":\"Ikram Ul Haq , Saira Shukat , Ikram Ullah , Waqar Ul Hassan , Hong-Na Zhang , Xiao-Bin Li , Feng-Chen Li\",\"doi\":\"10.1016/j.jocs.2025.102727\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The magnetohydrodynamic (MHD) micropolar nanofluid with stratification is evaluated in this work by integrated numerical computing using the Levenberg Marquardt backpropagation (LMBB) optimization technique, an artificial neural network (ANN) approach. After that, model is condensed to a set of problems with boundary values, which are resolved utilizing the proposed method LMBB algorithm and a numerical technique BVP4c. The LMBB approach is an iterative approach for figuring out the least of a function that is not linear, is distinct as the addition of squares. The outcomes are also cross-checked against those of earlier studies and the MATLAB’s BVP4c solver for validation. The mapping of velocity, concentration and temperature profiles from the input to results is another use of neural networking. These results show the accuracy level of the predictions and improvements made by ANN. To generalize a dataset, the BVP4c techniques’ performance is utilized to lower error of mean square. Data based on the ratio of training (80 %), validation (10 %) and testing (10 %) is used by the ANN-based LMBB backpropagation optimization technique. Histograms and function fitness are utilized to verify the algorithm’s dependability. For fluid dynamics, numerical methods and ANN perform incredibly well together, and this could result in new developments across a wide range of fields. The results of this study may aid in the optimization of fluid systems, leading to higher productivity and efficiency in a range of engineering applications.</div></div>\",\"PeriodicalId\":48907,\"journal\":{\"name\":\"Journal of Computational Science\",\"volume\":\"92 \",\"pages\":\"Article 102727\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1877750325002042\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1877750325002042","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Intelligent computing for magnetohydrodynamic micropolar nanofluid with stratification using Levenberg–Marquardt backpropagation algorithm
The magnetohydrodynamic (MHD) micropolar nanofluid with stratification is evaluated in this work by integrated numerical computing using the Levenberg Marquardt backpropagation (LMBB) optimization technique, an artificial neural network (ANN) approach. After that, model is condensed to a set of problems with boundary values, which are resolved utilizing the proposed method LMBB algorithm and a numerical technique BVP4c. The LMBB approach is an iterative approach for figuring out the least of a function that is not linear, is distinct as the addition of squares. The outcomes are also cross-checked against those of earlier studies and the MATLAB’s BVP4c solver for validation. The mapping of velocity, concentration and temperature profiles from the input to results is another use of neural networking. These results show the accuracy level of the predictions and improvements made by ANN. To generalize a dataset, the BVP4c techniques’ performance is utilized to lower error of mean square. Data based on the ratio of training (80 %), validation (10 %) and testing (10 %) is used by the ANN-based LMBB backpropagation optimization technique. Histograms and function fitness are utilized to verify the algorithm’s dependability. For fluid dynamics, numerical methods and ANN perform incredibly well together, and this could result in new developments across a wide range of fields. The results of this study may aid in the optimization of fluid systems, leading to higher productivity and efficiency in a range of engineering applications.
期刊介绍:
Computational Science is a rapidly growing multi- and interdisciplinary field that uses advanced computing and data analysis to understand and solve complex problems. It has reached a level of predictive capability that now firmly complements the traditional pillars of experimentation and theory.
The recent advances in experimental techniques such as detectors, on-line sensor networks and high-resolution imaging techniques, have opened up new windows into physical and biological processes at many levels of detail. The resulting data explosion allows for detailed data driven modeling and simulation.
This new discipline in science combines computational thinking, modern computational methods, devices and collateral technologies to address problems far beyond the scope of traditional numerical methods.
Computational science typically unifies three distinct elements:
• Modeling, Algorithms and Simulations (e.g. numerical and non-numerical, discrete and continuous);
• Software developed to solve science (e.g., biological, physical, and social), engineering, medicine, and humanities problems;
• Computer and information science that develops and optimizes the advanced system hardware, software, networking, and data management components (e.g. problem solving environments).