基于遗传U-Net和HBoost的乳腺癌分割和分类多模态集成框架

IF 4.9 2区 医学 Q1 ENGINEERING, BIOMEDICAL
K.Venkatesh Guru , Vignesh Janarthanan , M. Jaganathan , V. Senthil kumar
{"title":"基于遗传U-Net和HBoost的乳腺癌分割和分类多模态集成框架","authors":"K.Venkatesh Guru ,&nbsp;Vignesh Janarthanan ,&nbsp;M. Jaganathan ,&nbsp;V. Senthil kumar","doi":"10.1016/j.bspc.2025.108827","DOIUrl":null,"url":null,"abstract":"<div><div>Breast cancer remains a leading cause of mortality among women worldwide, and early, accurate diagnosis is essential to improving treatment outcomes. Traditional segmentation and classification models often fail in ultrasound imaging due to noisy inputs, imbalanced class distributions, and computational inefficiencies. To address these challenges, we propose M2G-HBoost, a multi-modal ensemble framework explicitly designed for robustness in noisy and unbalanced data conditions. The framework integrates cosine similarity–based Graph Convolutional Network (GCN) augmentation to enrich feature diversity by modeling global topological and attribute relationships, M2GCNet for joint spatial and channel-wise dependency modeling, Genetic U-Net optimized via evolutionary algorithms for parameter-efficient high-accuracy segmentation, and HBoost, a heterogeneous boosting ensemble, for resilient classification. This modular design was chosen to employ complementary strengths: GCN augmentation for data diversity, M2GCNet for rich feature extraction, Genetic U-Net for segmentation precision with low complexity, and HBoost for classification stability under imbalance. On the BUSI dataset, M2G-HBoost achieved a Dice score of 93.58 % and IoU of 91.81 %, outperforming CBAM-RIUnet (76.25 % Dice, 80.73 % IoU), PCA-UNet (80.47 %, 84.12 %), EDCNN (85.99 %, 86.24 %), ELRL-E (87.14 %, 88.67 %), and SegEIR-Net (91.07 %, 89.49 %). In classification, the model reached 96.45 % (benign), 98.53 % (malignant), and 98.87 % (normal), exceeding AdaBoost, XGBoost, and Gradient Boosting. These results demonstrate the superiority and clinical applicability of the proposed method, offering a robust, accurate, and efficient solution for breast cancer segmentation and classification in ultrasound imaging.</div></div>","PeriodicalId":55362,"journal":{"name":"Biomedical Signal Processing and Control","volume":"112 ","pages":"Article 108827"},"PeriodicalIF":4.9000,"publicationDate":"2025-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A multi-modal ensemble framework for breast cancer segmentation and classification using genetic U-Net and HBoost\",\"authors\":\"K.Venkatesh Guru ,&nbsp;Vignesh Janarthanan ,&nbsp;M. Jaganathan ,&nbsp;V. Senthil kumar\",\"doi\":\"10.1016/j.bspc.2025.108827\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Breast cancer remains a leading cause of mortality among women worldwide, and early, accurate diagnosis is essential to improving treatment outcomes. Traditional segmentation and classification models often fail in ultrasound imaging due to noisy inputs, imbalanced class distributions, and computational inefficiencies. To address these challenges, we propose M2G-HBoost, a multi-modal ensemble framework explicitly designed for robustness in noisy and unbalanced data conditions. The framework integrates cosine similarity–based Graph Convolutional Network (GCN) augmentation to enrich feature diversity by modeling global topological and attribute relationships, M2GCNet for joint spatial and channel-wise dependency modeling, Genetic U-Net optimized via evolutionary algorithms for parameter-efficient high-accuracy segmentation, and HBoost, a heterogeneous boosting ensemble, for resilient classification. This modular design was chosen to employ complementary strengths: GCN augmentation for data diversity, M2GCNet for rich feature extraction, Genetic U-Net for segmentation precision with low complexity, and HBoost for classification stability under imbalance. On the BUSI dataset, M2G-HBoost achieved a Dice score of 93.58 % and IoU of 91.81 %, outperforming CBAM-RIUnet (76.25 % Dice, 80.73 % IoU), PCA-UNet (80.47 %, 84.12 %), EDCNN (85.99 %, 86.24 %), ELRL-E (87.14 %, 88.67 %), and SegEIR-Net (91.07 %, 89.49 %). In classification, the model reached 96.45 % (benign), 98.53 % (malignant), and 98.87 % (normal), exceeding AdaBoost, XGBoost, and Gradient Boosting. These results demonstrate the superiority and clinical applicability of the proposed method, offering a robust, accurate, and efficient solution for breast cancer segmentation and classification in ultrasound imaging.</div></div>\",\"PeriodicalId\":55362,\"journal\":{\"name\":\"Biomedical Signal Processing and Control\",\"volume\":\"112 \",\"pages\":\"Article 108827\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Signal Processing and Control\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1746809425013382\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Signal Processing and Control","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1746809425013382","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

乳腺癌仍然是全世界妇女死亡的主要原因,早期、准确的诊断对于改善治疗结果至关重要。传统的分割和分类模型在超声成像中常常由于输入噪声、类分布不平衡和计算效率低下而失效。为了应对这些挑战,我们提出了M2G-HBoost,这是一个多模态集成框架,明确设计用于嘈杂和不平衡数据条件下的鲁棒性。该框架集成了基于余弦相似度的图卷积网络(GCN)增强,通过建模全局拓扑和属性关系来丰富特征多样性,M2GCNet用于联合空间和通道依赖建模,遗传U-Net通过进化算法优化,用于参数高效的高精度分割,HBoost是一种异构增强集成,用于弹性分类。选择这种模块化设计是为了利用互补优势:GCN增强实现数据多样性,M2GCNet实现丰富的特征提取,Genetic U-Net实现低复杂度的分割精度,HBoost实现不平衡下的分类稳定性。在BUSI数据集上,M2G-HBoost的Dice得分为93.58%,IoU为91.81%,优于cam - riunet (76.25% Dice, 80.73% IoU)、PCA-UNet(80.47%, 84.12%)、EDCNN(85.99%, 86.24%)、ELRL-E(87.14%, 88.67%)和SegEIR-Net(91.07%, 89.49%)。在分类方面,该模型达到96.45%(良性)、98.53%(恶性)和98.87%(正常),超过AdaBoost、XGBoost和Gradient Boosting。这些结果证明了该方法的优越性和临床适用性,为超声成像中乳腺癌的分割和分类提供了稳健、准确、高效的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A multi-modal ensemble framework for breast cancer segmentation and classification using genetic U-Net and HBoost
Breast cancer remains a leading cause of mortality among women worldwide, and early, accurate diagnosis is essential to improving treatment outcomes. Traditional segmentation and classification models often fail in ultrasound imaging due to noisy inputs, imbalanced class distributions, and computational inefficiencies. To address these challenges, we propose M2G-HBoost, a multi-modal ensemble framework explicitly designed for robustness in noisy and unbalanced data conditions. The framework integrates cosine similarity–based Graph Convolutional Network (GCN) augmentation to enrich feature diversity by modeling global topological and attribute relationships, M2GCNet for joint spatial and channel-wise dependency modeling, Genetic U-Net optimized via evolutionary algorithms for parameter-efficient high-accuracy segmentation, and HBoost, a heterogeneous boosting ensemble, for resilient classification. This modular design was chosen to employ complementary strengths: GCN augmentation for data diversity, M2GCNet for rich feature extraction, Genetic U-Net for segmentation precision with low complexity, and HBoost for classification stability under imbalance. On the BUSI dataset, M2G-HBoost achieved a Dice score of 93.58 % and IoU of 91.81 %, outperforming CBAM-RIUnet (76.25 % Dice, 80.73 % IoU), PCA-UNet (80.47 %, 84.12 %), EDCNN (85.99 %, 86.24 %), ELRL-E (87.14 %, 88.67 %), and SegEIR-Net (91.07 %, 89.49 %). In classification, the model reached 96.45 % (benign), 98.53 % (malignant), and 98.87 % (normal), exceeding AdaBoost, XGBoost, and Gradient Boosting. These results demonstrate the superiority and clinical applicability of the proposed method, offering a robust, accurate, and efficient solution for breast cancer segmentation and classification in ultrasound imaging.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomedical Signal Processing and Control
Biomedical Signal Processing and Control 工程技术-工程:生物医学
CiteScore
9.80
自引率
13.70%
发文量
822
审稿时长
4 months
期刊介绍: Biomedical Signal Processing and Control aims to provide a cross-disciplinary international forum for the interchange of information on research in the measurement and analysis of signals and images in clinical medicine and the biological sciences. Emphasis is placed on contributions dealing with the practical, applications-led research on the use of methods and devices in clinical diagnosis, patient monitoring and management. Biomedical Signal Processing and Control reflects the main areas in which these methods are being used and developed at the interface of both engineering and clinical science. The scope of the journal is defined to include relevant review papers, technical notes, short communications and letters. Tutorial papers and special issues will also be published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信