界面二次谐波产生的计算机预测:NaCl水溶液与(101)石英表面接触

IF 5.2 2区 化学 Q2 CHEMISTRY, PHYSICAL
Nijat Shukurov , Antoine Djeukeng Momo , Zdeněk Futera , Bingxin Chu , Arianna Marchioro , Milan Předota
{"title":"界面二次谐波产生的计算机预测:NaCl水溶液与(101)石英表面接触","authors":"Nijat Shukurov ,&nbsp;Antoine Djeukeng Momo ,&nbsp;Zdeněk Futera ,&nbsp;Bingxin Chu ,&nbsp;Arianna Marchioro ,&nbsp;Milan Předota","doi":"10.1016/j.molliq.2025.128539","DOIUrl":null,"url":null,"abstract":"<div><div>We present a computational approach for processing classical molecular dynamics (CMD) computer simulations of liquids at solid/liquid interfaces to determine the second-order susceptibility <span><math><msup><mi>χ</mi><mrow><mo>(</mo><mn>2</mn><mo>)</mo></mrow></msup></math></span> from the hyperpolarizability <span><math><mi>β</mi></math></span> of individual water molecules parameterized by quantum calculations. We apply the method to microscopically flat surfaces, but the results can also be applied to scattering from spherical particles (second-harmonic scattering, SHS) in colloidal dispersions. Our <span><math><msup><mi>χ</mi><mrow><mo>(</mo><mn>2</mn><mo>)</mo></mrow></msup></math></span> values, calculated from molecular trajectories of aqueous NaCl solutions in contact with (101) quartz surfaces, demonstrate the effect of the surface charge density (0 to <span><math><mo>−</mo><mn>0.12</mn></math></span> C/m<sup>2</sup>) and salt concentration (0 to 0.8 M) on the second-order nonlinear response. Moreover, we decompose the total signal into contributions from layers at different distances from the interface, allowing us to distinguish the surface-specific contribution from that of the diffuse layer. Analysis of axial profiles of structural (density, dipolar orientation) and electrostatic (charge density, electric field, electric potential) properties allows us to link them with the optical response. The method can also be applied to other solvents and studies of the impact of different types of dissolved ions and molecules on the non-resonant SH signals.</div></div>","PeriodicalId":371,"journal":{"name":"Journal of Molecular Liquids","volume":"438 ","pages":"Article 128539"},"PeriodicalIF":5.2000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computer prediction of second harmonic generation at interfaces: NaCl aqueous solution in contact with (101) quartz surfaces\",\"authors\":\"Nijat Shukurov ,&nbsp;Antoine Djeukeng Momo ,&nbsp;Zdeněk Futera ,&nbsp;Bingxin Chu ,&nbsp;Arianna Marchioro ,&nbsp;Milan Předota\",\"doi\":\"10.1016/j.molliq.2025.128539\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We present a computational approach for processing classical molecular dynamics (CMD) computer simulations of liquids at solid/liquid interfaces to determine the second-order susceptibility <span><math><msup><mi>χ</mi><mrow><mo>(</mo><mn>2</mn><mo>)</mo></mrow></msup></math></span> from the hyperpolarizability <span><math><mi>β</mi></math></span> of individual water molecules parameterized by quantum calculations. We apply the method to microscopically flat surfaces, but the results can also be applied to scattering from spherical particles (second-harmonic scattering, SHS) in colloidal dispersions. Our <span><math><msup><mi>χ</mi><mrow><mo>(</mo><mn>2</mn><mo>)</mo></mrow></msup></math></span> values, calculated from molecular trajectories of aqueous NaCl solutions in contact with (101) quartz surfaces, demonstrate the effect of the surface charge density (0 to <span><math><mo>−</mo><mn>0.12</mn></math></span> C/m<sup>2</sup>) and salt concentration (0 to 0.8 M) on the second-order nonlinear response. Moreover, we decompose the total signal into contributions from layers at different distances from the interface, allowing us to distinguish the surface-specific contribution from that of the diffuse layer. Analysis of axial profiles of structural (density, dipolar orientation) and electrostatic (charge density, electric field, electric potential) properties allows us to link them with the optical response. The method can also be applied to other solvents and studies of the impact of different types of dissolved ions and molecules on the non-resonant SH signals.</div></div>\",\"PeriodicalId\":371,\"journal\":{\"name\":\"Journal of Molecular Liquids\",\"volume\":\"438 \",\"pages\":\"Article 128539\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2025-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Liquids\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167732225017167\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Liquids","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167732225017167","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种计算方法,用于处理固体/液体界面液体的经典分子动力学(CMD)计算机模拟,以确定由量子计算参数化的单个水分子的超极化率β的二阶磁化率χ(2)。我们将该方法应用于微观平面,但结果也可以应用于胶体分散体中球形颗粒的散射(二次谐波散射,SHS)。我们的χ(2)值是根据接触(101)石英表面的NaCl水溶液的分子轨迹计算得出的,表明表面电荷密度(0 ~ - 0.12 C/m2)和盐浓度(0 ~ 0.8 M)对二阶非线性响应的影响。此外,我们将总信号分解为距离界面不同距离的层的贡献,从而使我们能够将表面特定贡献与漫射层的贡献区分开来。结构(密度,偶极取向)和静电(电荷密度,电场,电势)特性的轴向分布分析使我们能够将它们与光学响应联系起来。该方法也可应用于其他溶剂,研究不同类型的溶解离子和分子对非共振SH信号的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computer prediction of second harmonic generation at interfaces: NaCl aqueous solution in contact with (101) quartz surfaces
We present a computational approach for processing classical molecular dynamics (CMD) computer simulations of liquids at solid/liquid interfaces to determine the second-order susceptibility χ(2) from the hyperpolarizability β of individual water molecules parameterized by quantum calculations. We apply the method to microscopically flat surfaces, but the results can also be applied to scattering from spherical particles (second-harmonic scattering, SHS) in colloidal dispersions. Our χ(2) values, calculated from molecular trajectories of aqueous NaCl solutions in contact with (101) quartz surfaces, demonstrate the effect of the surface charge density (0 to 0.12 C/m2) and salt concentration (0 to 0.8 M) on the second-order nonlinear response. Moreover, we decompose the total signal into contributions from layers at different distances from the interface, allowing us to distinguish the surface-specific contribution from that of the diffuse layer. Analysis of axial profiles of structural (density, dipolar orientation) and electrostatic (charge density, electric field, electric potential) properties allows us to link them with the optical response. The method can also be applied to other solvents and studies of the impact of different types of dissolved ions and molecules on the non-resonant SH signals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Molecular Liquids
Journal of Molecular Liquids 化学-物理:原子、分子和化学物理
CiteScore
10.30
自引率
16.70%
发文量
2597
审稿时长
78 days
期刊介绍: The journal includes papers in the following areas: – Simple organic liquids and mixtures – Ionic liquids – Surfactant solutions (including micelles and vesicles) and liquid interfaces – Colloidal solutions and nanoparticles – Thermotropic and lyotropic liquid crystals – Ferrofluids – Water, aqueous solutions and other hydrogen-bonded liquids – Lubricants, polymer solutions and melts – Molten metals and salts – Phase transitions and critical phenomena in liquids and confined fluids – Self assembly in complex liquids.– Biomolecules in solution The emphasis is on the molecular (or microscopic) understanding of particular liquids or liquid systems, especially concerning structure, dynamics and intermolecular forces. The experimental techniques used may include: – Conventional spectroscopy (mid-IR and far-IR, Raman, NMR, etc.) – Non-linear optics and time resolved spectroscopy (psec, fsec, asec, ISRS, etc.) – Light scattering (Rayleigh, Brillouin, PCS, etc.) – Dielectric relaxation – X-ray and neutron scattering and diffraction. Experimental studies, computer simulations (MD or MC) and analytical theory will be considered for publication; papers just reporting experimental results that do not contribute to the understanding of the fundamentals of molecular and ionic liquids will not be accepted. Only papers of a non-routine nature and advancing the field will be considered for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信