FeOOH在Bi12O17Cl2@FeOOH异质结中调制Bi12O17Cl2表面电位井深,促进压电电荷转移和压电自fenton催化

IF 13.5 2区 化学 Q1 CHEMISTRY, PHYSICAL
Jiangyuan Qiu , Tao Yu , Junxin Chen , Wenxuan Li , Xiaoxuan Zhang , Jinsheng Li , Rui Guo , Zaiyin Huang , Xuanwen Liu
{"title":"FeOOH在Bi12O17Cl2@FeOOH异质结中调制Bi12O17Cl2表面电位井深,促进压电电荷转移和压电自fenton催化","authors":"Jiangyuan Qiu ,&nbsp;Tao Yu ,&nbsp;Junxin Chen ,&nbsp;Wenxuan Li ,&nbsp;Xiaoxuan Zhang ,&nbsp;Jinsheng Li ,&nbsp;Rui Guo ,&nbsp;Zaiyin Huang ,&nbsp;Xuanwen Liu","doi":"10.1016/j.actphy.2025.100157","DOIUrl":null,"url":null,"abstract":"<div><div>Although the design of heterojunction piezoelectric catalysts has significantly enhanced catalytic activity, the regulatory mechanisms of heterojunction interfaces on surface potential wells during piezoelectric processes and their impact on carrier migration still lack systematic investigation. This work constructs an enhance interface interaction heterointerface between amorphous FeOOH and Bi<sub>12</sub>O<sub>17</sub>Cl<sub>2</sub> (BOC) in Bi<sub>12</sub>O<sub>17</sub>Cl<sub>2</sub>@FeOOH through a self-assembly strategy. This strong interfacial interaction significantly enhances interface polarity can substantially suppress the stress-responsive capability of surface charges on BOC (maximum reduction reached as high as 63 %–98 % of original value). This significantly reduces the depth of surface potential wells during piezoelectric processes, thereby effectively weakening piezoelectric charge confinement while promoting charge transfer. Concurrently, Bi–O–Fe chemical bonds formed at the interface and establish charge transport channels. These synergistic mechanisms elevate the H<sub>2</sub>O<sub>2</sub> production rate to 3.04 mmol g<sup>−1</sup> h<sup>−1</sup> for participate in the piezoelectric self-Fenton reaction and the removal rate of total organic carbon increased 3 fold (18.6 % <em>vs</em> 55.8 %).</div></div>","PeriodicalId":6964,"journal":{"name":"物理化学学报","volume":"42 1","pages":"Article 100157"},"PeriodicalIF":13.5000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modulate surface potential well depth of Bi12O17Cl2 by FeOOH in Bi12O17Cl2@FeOOH heterojunction to boost piezoelectric charge transfer and piezo-self-Fenton catalysis\",\"authors\":\"Jiangyuan Qiu ,&nbsp;Tao Yu ,&nbsp;Junxin Chen ,&nbsp;Wenxuan Li ,&nbsp;Xiaoxuan Zhang ,&nbsp;Jinsheng Li ,&nbsp;Rui Guo ,&nbsp;Zaiyin Huang ,&nbsp;Xuanwen Liu\",\"doi\":\"10.1016/j.actphy.2025.100157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Although the design of heterojunction piezoelectric catalysts has significantly enhanced catalytic activity, the regulatory mechanisms of heterojunction interfaces on surface potential wells during piezoelectric processes and their impact on carrier migration still lack systematic investigation. This work constructs an enhance interface interaction heterointerface between amorphous FeOOH and Bi<sub>12</sub>O<sub>17</sub>Cl<sub>2</sub> (BOC) in Bi<sub>12</sub>O<sub>17</sub>Cl<sub>2</sub>@FeOOH through a self-assembly strategy. This strong interfacial interaction significantly enhances interface polarity can substantially suppress the stress-responsive capability of surface charges on BOC (maximum reduction reached as high as 63 %–98 % of original value). This significantly reduces the depth of surface potential wells during piezoelectric processes, thereby effectively weakening piezoelectric charge confinement while promoting charge transfer. Concurrently, Bi–O–Fe chemical bonds formed at the interface and establish charge transport channels. These synergistic mechanisms elevate the H<sub>2</sub>O<sub>2</sub> production rate to 3.04 mmol g<sup>−1</sup> h<sup>−1</sup> for participate in the piezoelectric self-Fenton reaction and the removal rate of total organic carbon increased 3 fold (18.6 % <em>vs</em> 55.8 %).</div></div>\",\"PeriodicalId\":6964,\"journal\":{\"name\":\"物理化学学报\",\"volume\":\"42 1\",\"pages\":\"Article 100157\"},\"PeriodicalIF\":13.5000,\"publicationDate\":\"2025-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"物理化学学报\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1000681825001134\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"物理化学学报","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1000681825001134","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

虽然异质结压电催化剂的设计显著提高了催化活性,但在压电过程中异质结界面对表面电位阱的调控机制及其对载流子迁移的影响仍缺乏系统的研究。本工作通过自组装策略在Bi12O17Cl2@FeOOH中构建了非晶FeOOH与Bi12O17Cl2 (BOC)之间增强界面相互作用的异质界面。这种强的界面相互作用显著增强了界面极性,大大抑制了BOC表面电荷的应力响应能力(最大降幅可达原值的63% - 98%)。这大大降低了压电过程中表面电位阱的深度,从而有效地削弱了压电电荷约束,同时促进了电荷转移。同时,在界面处形成Bi-O-Fe化学键,建立电荷传输通道。这些协同机制使参与压电自fenton反应的H2O2产率提高到3.04 mmol g−1 h−1,总有机碳去除率提高了3倍(18.6%比55.8%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Modulate surface potential well depth of Bi12O17Cl2 by FeOOH in Bi12O17Cl2@FeOOH heterojunction to boost piezoelectric charge transfer and piezo-self-Fenton catalysis

Modulate surface potential well depth of Bi12O17Cl2 by FeOOH in Bi12O17Cl2@FeOOH heterojunction to boost piezoelectric charge transfer and piezo-self-Fenton catalysis
Although the design of heterojunction piezoelectric catalysts has significantly enhanced catalytic activity, the regulatory mechanisms of heterojunction interfaces on surface potential wells during piezoelectric processes and their impact on carrier migration still lack systematic investigation. This work constructs an enhance interface interaction heterointerface between amorphous FeOOH and Bi12O17Cl2 (BOC) in Bi12O17Cl2@FeOOH through a self-assembly strategy. This strong interfacial interaction significantly enhances interface polarity can substantially suppress the stress-responsive capability of surface charges on BOC (maximum reduction reached as high as 63 %–98 % of original value). This significantly reduces the depth of surface potential wells during piezoelectric processes, thereby effectively weakening piezoelectric charge confinement while promoting charge transfer. Concurrently, Bi–O–Fe chemical bonds formed at the interface and establish charge transport channels. These synergistic mechanisms elevate the H2O2 production rate to 3.04 mmol g−1 h−1 for participate in the piezoelectric self-Fenton reaction and the removal rate of total organic carbon increased 3 fold (18.6 % vs 55.8 %).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
物理化学学报
物理化学学报 化学-物理化学
CiteScore
16.60
自引率
5.50%
发文量
9754
审稿时长
1.2 months
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信