{"title":"大垂直压电性下氧吸附PtX2 (X=S,Se)的振动识别","authors":"Wei Zhang , Weixiao Ji","doi":"10.1016/j.commatsci.2025.114298","DOIUrl":null,"url":null,"abstract":"<div><div>Among the monolayer transition metal dichalcogenide (TMDC) MX<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> family, pristine MX<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> with <span><math><mi>T</mi></math></span>-phase structures such as PtX<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> generally have no piezoelectricity. Though the good surface air-stability of PtX<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> (X=S,Se) were reported by experiments, the effect of oxygen adsorption on piezoelectricity is unknown. Here, taking PtX<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> (X=S,Se) as prototype and using the first-principles calculations, the PtX<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>@O (X=S,Se), where one side of PtX<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> layer are fully adsorbed by O, are identified as piezoelectrics with strong out-of-plane piezoelectricity and large carrier mobility. PtX<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>@O are checked to have mechanic, dynamic and thermal stabilities. Unlike PtX<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>, PtX<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>@O possess more Raman-active modes whose Raman-activities and peak positions can be regularly tuned by strain. The predicted electron mobility of PtX<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>@O reaches up to an order of magnitude of 10<span><math><msup><mrow></mrow><mrow><mn>3</mn></mrow></msup></math></span> cm<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span> V<span><math><msup><mrow></mrow><mrow><mi>−1</mi></mrow></msup></math></span> s<span><math><msup><mrow></mrow><mrow><mi>−1</mi></mrow></msup></math></span>. Notably, the robust piezoelectricity is realized by the O adsorption. The in-plane(out-of-plane) <span><math><msub><mrow><mi>d</mi></mrow><mrow><mn>11</mn></mrow></msub></math></span> (<span><math><msub><mrow><mi>d</mi></mrow><mrow><mn>31</mn></mrow></msub></math></span>) reaches up to 7.84(1.01) pm/V. The <span><math><msub><mrow><mi>d</mi></mrow><mrow><mn>31</mn></mrow></msub></math></span> is an order of magnitude larger than that of other typical MX<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>-based 2D piezoelectrics, including PtSSe, MoSTe, etc. The large vertical piezoelectricity is attributed to the asymmetric charge transfers between the up and down layers which induce large potential-step (<span><math><mi>Δ</mi></math></span>V). The trend of <span><math><mi>Δ</mi></math></span>V generally coincides with that of <span><math><msub><mrow><mi>e</mi></mrow><mrow><mn>31</mn></mrow></msub></math></span> (<span><math><msub><mrow><mi>d</mi></mrow><mrow><mn>31</mn></mrow></msub></math></span>), the larger <span><math><mi>Δ</mi></math></span>V is, the larger <span><math><msub><mrow><mi>e</mi></mrow><mrow><mn>31</mn></mrow></msub></math></span> (<span><math><msub><mrow><mi>d</mi></mrow><mrow><mn>31</mn></mrow></msub></math></span>) could be obtained. Our results not only show the potential use of PtX<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>@O on 2D piezoelectric devices, but also indicate the crucial role of <span><math><mi>Δ</mi></math></span>V-engineering for pre-design of piezoelectrics. The findings can be extended to realization of piezoelectricity of other MX<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> with <span><math><mi>T</mi></math></span>-phase structures such as HfX<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>, SnX<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>.</div></div>","PeriodicalId":10650,"journal":{"name":"Computational Materials Science","volume":"261 ","pages":"Article 114298"},"PeriodicalIF":3.3000,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vibrational identification of oxygen adsorbed PtX2 (X=S,Se) with large vertical piezoelectricity\",\"authors\":\"Wei Zhang , Weixiao Ji\",\"doi\":\"10.1016/j.commatsci.2025.114298\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Among the monolayer transition metal dichalcogenide (TMDC) MX<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> family, pristine MX<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> with <span><math><mi>T</mi></math></span>-phase structures such as PtX<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> generally have no piezoelectricity. Though the good surface air-stability of PtX<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> (X=S,Se) were reported by experiments, the effect of oxygen adsorption on piezoelectricity is unknown. Here, taking PtX<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> (X=S,Se) as prototype and using the first-principles calculations, the PtX<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>@O (X=S,Se), where one side of PtX<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> layer are fully adsorbed by O, are identified as piezoelectrics with strong out-of-plane piezoelectricity and large carrier mobility. PtX<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>@O are checked to have mechanic, dynamic and thermal stabilities. Unlike PtX<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>, PtX<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>@O possess more Raman-active modes whose Raman-activities and peak positions can be regularly tuned by strain. The predicted electron mobility of PtX<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>@O reaches up to an order of magnitude of 10<span><math><msup><mrow></mrow><mrow><mn>3</mn></mrow></msup></math></span> cm<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span> V<span><math><msup><mrow></mrow><mrow><mi>−1</mi></mrow></msup></math></span> s<span><math><msup><mrow></mrow><mrow><mi>−1</mi></mrow></msup></math></span>. Notably, the robust piezoelectricity is realized by the O adsorption. The in-plane(out-of-plane) <span><math><msub><mrow><mi>d</mi></mrow><mrow><mn>11</mn></mrow></msub></math></span> (<span><math><msub><mrow><mi>d</mi></mrow><mrow><mn>31</mn></mrow></msub></math></span>) reaches up to 7.84(1.01) pm/V. The <span><math><msub><mrow><mi>d</mi></mrow><mrow><mn>31</mn></mrow></msub></math></span> is an order of magnitude larger than that of other typical MX<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>-based 2D piezoelectrics, including PtSSe, MoSTe, etc. The large vertical piezoelectricity is attributed to the asymmetric charge transfers between the up and down layers which induce large potential-step (<span><math><mi>Δ</mi></math></span>V). The trend of <span><math><mi>Δ</mi></math></span>V generally coincides with that of <span><math><msub><mrow><mi>e</mi></mrow><mrow><mn>31</mn></mrow></msub></math></span> (<span><math><msub><mrow><mi>d</mi></mrow><mrow><mn>31</mn></mrow></msub></math></span>), the larger <span><math><mi>Δ</mi></math></span>V is, the larger <span><math><msub><mrow><mi>e</mi></mrow><mrow><mn>31</mn></mrow></msub></math></span> (<span><math><msub><mrow><mi>d</mi></mrow><mrow><mn>31</mn></mrow></msub></math></span>) could be obtained. Our results not only show the potential use of PtX<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>@O on 2D piezoelectric devices, but also indicate the crucial role of <span><math><mi>Δ</mi></math></span>V-engineering for pre-design of piezoelectrics. The findings can be extended to realization of piezoelectricity of other MX<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> with <span><math><mi>T</mi></math></span>-phase structures such as HfX<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>, SnX<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>.</div></div>\",\"PeriodicalId\":10650,\"journal\":{\"name\":\"Computational Materials Science\",\"volume\":\"261 \",\"pages\":\"Article 114298\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S092702562500641X\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092702562500641X","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Vibrational identification of oxygen adsorbed PtX2 (X=S,Se) with large vertical piezoelectricity
Among the monolayer transition metal dichalcogenide (TMDC) MX family, pristine MX with -phase structures such as PtX generally have no piezoelectricity. Though the good surface air-stability of PtX (X=S,Se) were reported by experiments, the effect of oxygen adsorption on piezoelectricity is unknown. Here, taking PtX (X=S,Se) as prototype and using the first-principles calculations, the PtX@O (X=S,Se), where one side of PtX layer are fully adsorbed by O, are identified as piezoelectrics with strong out-of-plane piezoelectricity and large carrier mobility. PtX@O are checked to have mechanic, dynamic and thermal stabilities. Unlike PtX, PtX@O possess more Raman-active modes whose Raman-activities and peak positions can be regularly tuned by strain. The predicted electron mobility of PtX@O reaches up to an order of magnitude of 10 cm V s. Notably, the robust piezoelectricity is realized by the O adsorption. The in-plane(out-of-plane) () reaches up to 7.84(1.01) pm/V. The is an order of magnitude larger than that of other typical MX-based 2D piezoelectrics, including PtSSe, MoSTe, etc. The large vertical piezoelectricity is attributed to the asymmetric charge transfers between the up and down layers which induce large potential-step (V). The trend of V generally coincides with that of (), the larger V is, the larger () could be obtained. Our results not only show the potential use of PtX@O on 2D piezoelectric devices, but also indicate the crucial role of V-engineering for pre-design of piezoelectrics. The findings can be extended to realization of piezoelectricity of other MX with -phase structures such as HfX, SnX.
期刊介绍:
The goal of Computational Materials Science is to report on results that provide new or unique insights into, or significantly expand our understanding of, the properties of materials or phenomena associated with their design, synthesis, processing, characterization, and utilization. To be relevant to the journal, the results should be applied or applicable to specific material systems that are discussed within the submission.