基于矩的热辐射输运自适应时间积分

IF 3.8 2区 物理与天体物理 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Ben S. Southworth , Steven Walton , Steven B. Roberts , HyeongKae Park
{"title":"基于矩的热辐射输运自适应时间积分","authors":"Ben S. Southworth ,&nbsp;Steven Walton ,&nbsp;Steven B. Roberts ,&nbsp;HyeongKae Park","doi":"10.1016/j.jcp.2025.114417","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper we develop a framework for moment-based adaptive time integration of deterministic multifrequency thermal radiation transpot (TRT). We generalize our recent semi-implicit-explicit (IMEX) integration framework for gray TRT to multifrequency TRT, and also introduce a semi-implicit variation that facilitates higher-order integration of TRT, where each stage is implicit in all components except opacities. To appeal to the broad literature on adaptivity with Runge–Kutta methods, we derive new embedded methods for four asymptotic preserving IMEX Runge–Kutta schemes we have found to be robust in our previous work on TRT and radiation hydrodynamics. We then use a moment-based high-order-low-order representation of the transport equations. Due to the high dimensionality, memory is always a concern in simulating TRT. We form error estimates and adaptivity in time purely based on temperature and radiation energy, for a trivial overhead in computational cost and memory usage compared with the base second order integrators. We then test the adaptivity in time on the tophat and Larsen problem, demonstrating the ability of the adaptive algorithm to naturally vary the timestep across 4–5 orders of magnitude, ranging from the dynamical timescales of the streaming regime to the thick diffusion limit.</div></div>","PeriodicalId":352,"journal":{"name":"Journal of Computational Physics","volume":"543 ","pages":"Article 114417"},"PeriodicalIF":3.8000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Moment-based adaptive time integration for thermal radiation transport\",\"authors\":\"Ben S. Southworth ,&nbsp;Steven Walton ,&nbsp;Steven B. Roberts ,&nbsp;HyeongKae Park\",\"doi\":\"10.1016/j.jcp.2025.114417\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper we develop a framework for moment-based adaptive time integration of deterministic multifrequency thermal radiation transpot (TRT). We generalize our recent semi-implicit-explicit (IMEX) integration framework for gray TRT to multifrequency TRT, and also introduce a semi-implicit variation that facilitates higher-order integration of TRT, where each stage is implicit in all components except opacities. To appeal to the broad literature on adaptivity with Runge–Kutta methods, we derive new embedded methods for four asymptotic preserving IMEX Runge–Kutta schemes we have found to be robust in our previous work on TRT and radiation hydrodynamics. We then use a moment-based high-order-low-order representation of the transport equations. Due to the high dimensionality, memory is always a concern in simulating TRT. We form error estimates and adaptivity in time purely based on temperature and radiation energy, for a trivial overhead in computational cost and memory usage compared with the base second order integrators. We then test the adaptivity in time on the tophat and Larsen problem, demonstrating the ability of the adaptive algorithm to naturally vary the timestep across 4–5 orders of magnitude, ranging from the dynamical timescales of the streaming regime to the thick diffusion limit.</div></div>\",\"PeriodicalId\":352,\"journal\":{\"name\":\"Journal of Computational Physics\",\"volume\":\"543 \",\"pages\":\"Article 114417\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021999125006990\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021999125006990","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于矩的确定性多频热辐射传输(TRT)自适应时间积分框架。我们将最近的灰色TRT的半隐式-显式(IMEX)积分框架推广到多频TRT,并引入了一种半隐式变化,促进了TRT的高阶积分,其中每个阶段在除不透明外的所有分量中都是隐式的。为了吸引关于龙格-库塔方法自适应的广泛文献,我们为四种渐近保持IMEX龙格-库塔格式推导了新的嵌入方法,我们在之前的TRT和辐射流体动力学研究中发现了这些方法的鲁棒性。然后,我们使用基于矩的输运方程的高阶-低阶表示。由于TRT的高维性,记忆一直是模拟TRT时需要关注的问题。我们完全基于温度和辐射能量在时间上形成误差估计和自适应,与基本二阶积分器相比,在计算成本和内存使用方面的开销微不足道。然后,我们在tophat和Larsen问题上测试了自适应算法在时间上的自适应能力,证明了自适应算法能够自然地在4-5个数量级上改变时间步长,范围从流状态的动态时间尺度到厚扩散极限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Moment-based adaptive time integration for thermal radiation transport
In this paper we develop a framework for moment-based adaptive time integration of deterministic multifrequency thermal radiation transpot (TRT). We generalize our recent semi-implicit-explicit (IMEX) integration framework for gray TRT to multifrequency TRT, and also introduce a semi-implicit variation that facilitates higher-order integration of TRT, where each stage is implicit in all components except opacities. To appeal to the broad literature on adaptivity with Runge–Kutta methods, we derive new embedded methods for four asymptotic preserving IMEX Runge–Kutta schemes we have found to be robust in our previous work on TRT and radiation hydrodynamics. We then use a moment-based high-order-low-order representation of the transport equations. Due to the high dimensionality, memory is always a concern in simulating TRT. We form error estimates and adaptivity in time purely based on temperature and radiation energy, for a trivial overhead in computational cost and memory usage compared with the base second order integrators. We then test the adaptivity in time on the tophat and Larsen problem, demonstrating the ability of the adaptive algorithm to naturally vary the timestep across 4–5 orders of magnitude, ranging from the dynamical timescales of the streaming regime to the thick diffusion limit.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computational Physics
Journal of Computational Physics 物理-计算机:跨学科应用
CiteScore
7.60
自引率
14.60%
发文量
763
审稿时长
5.8 months
期刊介绍: Journal of Computational Physics thoroughly treats the computational aspects of physical problems, presenting techniques for the numerical solution of mathematical equations arising in all areas of physics. The journal seeks to emphasize methods that cross disciplinary boundaries. The Journal of Computational Physics also publishes short notes of 4 pages or less (including figures, tables, and references but excluding title pages). Letters to the Editor commenting on articles already published in this Journal will also be considered. Neither notes nor letters should have an abstract.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信