基于Landsat-8/9和Sentinel-2数据的中国首个无间隙20 m 5天LAI/FAPAR产品(2018-2023

IF 11.4 1区 地球科学 Q1 ENVIRONMENTAL SCIENCES
Han Ma , Qian Wang , WenYuan Li , Yongzhe Chen , Jianglei Xu , Yichuan Ma , Jianxi Huang , Shunlin Liang
{"title":"基于Landsat-8/9和Sentinel-2数据的中国首个无间隙20 m 5天LAI/FAPAR产品(2018-2023","authors":"Han Ma ,&nbsp;Qian Wang ,&nbsp;WenYuan Li ,&nbsp;Yongzhe Chen ,&nbsp;Jianglei Xu ,&nbsp;Yichuan Ma ,&nbsp;Jianxi Huang ,&nbsp;Shunlin Liang","doi":"10.1016/j.rse.2025.115048","DOIUrl":null,"url":null,"abstract":"<div><div>Leaf Area Index (LAI) and Fraction of Absorbed Photosynthetically Active Radiation (FAPAR) are essential land variables for environmental monitoring and climate modeling. High resolution (≤30 m) gap-free LAI/FAPAR products are in high demand, but frequent cloud contaminations in optical data cause substantial data gaps. To address the ill-posed nature of land surface variable inversion by leveraging time-series information instead of traditional pixel-based inversions, this study presents a temporal deep learning model that jointly estimates gap-free, 20 m/5-day LAI/FAPAR from integrated Landsat-8/9 and Sentinel-2 sequential observations, denoted as High-resolution Global LAnd Surface Satellite (Hi-GLASS) LS20 LAI/FAPAR products, part of the Hi-GLASS level 3 product suite. A hybrid Bidirectional LSTM with an attention mechanism that synergizes multiple satellite observations effectively under different cloud cover conditions was trained on representative samples derived from GLASS LAI/FAPAR and 30 m land cover data, accounting for site heterogeneity. The algorithm was directly validated against 4046 in-situ measurements from 29 validation sites, achieving an R<sup>2</sup> of 0.79 for LAI and 0.86 for FAPAR, Root Mean Square Error (RMSE) of 1.0 for LAI and 0.155 for FAPAR. Intercomparisons with existing high and coarse resolution products showed superior continuity and accuracy. To implement the model, we constructed Landsat and Sentinel-2 Analysis Ready Data (LSARD) and generated the first 20 m gap-free LAI/FAPAR product over China from 2018 to 2023 (<span><span>www.glasss.hku.hk</span><svg><path></path></svg></span>). We also provide a web tool on Google Colab that can calculate LAI/FAPAR for any region of interest. Unlike methods that rely solely on clear-sky pixels from a single sensor, our approach enables spatiotemporally continuous and physically consistent LAI/FAPAR estimates from multiple sensors.</div></div>","PeriodicalId":417,"journal":{"name":"Remote Sensing of Environment","volume":"331 ","pages":"Article 115048"},"PeriodicalIF":11.4000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The first gap-free 20 m 5-day LAI/FAPAR products over China (2018–2023) from integrated Landsat-8/9 and Sentinel-2 Analysis Ready Data\",\"authors\":\"Han Ma ,&nbsp;Qian Wang ,&nbsp;WenYuan Li ,&nbsp;Yongzhe Chen ,&nbsp;Jianglei Xu ,&nbsp;Yichuan Ma ,&nbsp;Jianxi Huang ,&nbsp;Shunlin Liang\",\"doi\":\"10.1016/j.rse.2025.115048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Leaf Area Index (LAI) and Fraction of Absorbed Photosynthetically Active Radiation (FAPAR) are essential land variables for environmental monitoring and climate modeling. High resolution (≤30 m) gap-free LAI/FAPAR products are in high demand, but frequent cloud contaminations in optical data cause substantial data gaps. To address the ill-posed nature of land surface variable inversion by leveraging time-series information instead of traditional pixel-based inversions, this study presents a temporal deep learning model that jointly estimates gap-free, 20 m/5-day LAI/FAPAR from integrated Landsat-8/9 and Sentinel-2 sequential observations, denoted as High-resolution Global LAnd Surface Satellite (Hi-GLASS) LS20 LAI/FAPAR products, part of the Hi-GLASS level 3 product suite. A hybrid Bidirectional LSTM with an attention mechanism that synergizes multiple satellite observations effectively under different cloud cover conditions was trained on representative samples derived from GLASS LAI/FAPAR and 30 m land cover data, accounting for site heterogeneity. The algorithm was directly validated against 4046 in-situ measurements from 29 validation sites, achieving an R<sup>2</sup> of 0.79 for LAI and 0.86 for FAPAR, Root Mean Square Error (RMSE) of 1.0 for LAI and 0.155 for FAPAR. Intercomparisons with existing high and coarse resolution products showed superior continuity and accuracy. To implement the model, we constructed Landsat and Sentinel-2 Analysis Ready Data (LSARD) and generated the first 20 m gap-free LAI/FAPAR product over China from 2018 to 2023 (<span><span>www.glasss.hku.hk</span><svg><path></path></svg></span>). We also provide a web tool on Google Colab that can calculate LAI/FAPAR for any region of interest. Unlike methods that rely solely on clear-sky pixels from a single sensor, our approach enables spatiotemporally continuous and physically consistent LAI/FAPAR estimates from multiple sensors.</div></div>\",\"PeriodicalId\":417,\"journal\":{\"name\":\"Remote Sensing of Environment\",\"volume\":\"331 \",\"pages\":\"Article 115048\"},\"PeriodicalIF\":11.4000,\"publicationDate\":\"2025-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Remote Sensing of Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0034425725004523\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing of Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0034425725004523","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

叶面积指数(LAI)和吸收光合有效辐射分数(FAPAR)是环境监测和气候模拟的重要土地变量。高分辨率(≤30 m)无间隙LAI/FAPAR产品需求量很大,但光学数据中频繁的云污染导致了大量的数据缺口。为了利用时间序列信息而不是传统的基于像元的反演来解决地表变量反演的不定性问题,本研究提出了一种时间深度学习模型,该模型通过综合Landsat-8/9和Sentinel-2序列观测数据联合估计无间隙的20 m/5天LAI/FAPAR,称为高分辨率全球地表卫星(Hi-GLASS) LS20 LAI/FAPAR产品,该产品是Hi-GLASS 3级产品系列的一部分。在考虑站点异质性的情况下,利用GLASS LAI/FAPAR和30 m土地覆盖数据的代表性样本,训练了一个具有注意机制的混合型双向LSTM,该混合型双向LSTM具有不同云覆盖条件下多个卫星观测的有效协同作用。对29个验证点的4046个原位测量结果直接验证了该算法,LAI和FAPAR的R2分别为0.79和0.86,LAI和FAPAR的均方根误差(RMSE)分别为1.0和0.155。与现有的高分辨率和粗分辨率产品进行对比,显示出较好的连续性和准确性。为了实现该模型,我们构建了Landsat和Sentinel-2分析Ready数据(LSARD),并生成了2018年至2023年中国第一个20 m无间隙LAI/FAPAR产品(www.glasss.hku.hk)。我们还在谷歌Colab上提供了一个web工具,可以计算任何感兴趣地区的LAI/FAPAR。与仅依赖单个传感器的晴空像素的方法不同,我们的方法能够从多个传感器中获得时空连续和物理一致的LAI/FAPAR估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The first gap-free 20 m 5-day LAI/FAPAR products over China (2018–2023) from integrated Landsat-8/9 and Sentinel-2 Analysis Ready Data
Leaf Area Index (LAI) and Fraction of Absorbed Photosynthetically Active Radiation (FAPAR) are essential land variables for environmental monitoring and climate modeling. High resolution (≤30 m) gap-free LAI/FAPAR products are in high demand, but frequent cloud contaminations in optical data cause substantial data gaps. To address the ill-posed nature of land surface variable inversion by leveraging time-series information instead of traditional pixel-based inversions, this study presents a temporal deep learning model that jointly estimates gap-free, 20 m/5-day LAI/FAPAR from integrated Landsat-8/9 and Sentinel-2 sequential observations, denoted as High-resolution Global LAnd Surface Satellite (Hi-GLASS) LS20 LAI/FAPAR products, part of the Hi-GLASS level 3 product suite. A hybrid Bidirectional LSTM with an attention mechanism that synergizes multiple satellite observations effectively under different cloud cover conditions was trained on representative samples derived from GLASS LAI/FAPAR and 30 m land cover data, accounting for site heterogeneity. The algorithm was directly validated against 4046 in-situ measurements from 29 validation sites, achieving an R2 of 0.79 for LAI and 0.86 for FAPAR, Root Mean Square Error (RMSE) of 1.0 for LAI and 0.155 for FAPAR. Intercomparisons with existing high and coarse resolution products showed superior continuity and accuracy. To implement the model, we constructed Landsat and Sentinel-2 Analysis Ready Data (LSARD) and generated the first 20 m gap-free LAI/FAPAR product over China from 2018 to 2023 (www.glasss.hku.hk). We also provide a web tool on Google Colab that can calculate LAI/FAPAR for any region of interest. Unlike methods that rely solely on clear-sky pixels from a single sensor, our approach enables spatiotemporally continuous and physically consistent LAI/FAPAR estimates from multiple sensors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Remote Sensing of Environment
Remote Sensing of Environment 环境科学-成像科学与照相技术
CiteScore
25.10
自引率
8.90%
发文量
455
审稿时长
53 days
期刊介绍: Remote Sensing of Environment (RSE) serves the Earth observation community by disseminating results on the theory, science, applications, and technology that contribute to advancing the field of remote sensing. With a thoroughly interdisciplinary approach, RSE encompasses terrestrial, oceanic, and atmospheric sensing. The journal emphasizes biophysical and quantitative approaches to remote sensing at local to global scales, covering a diverse range of applications and techniques. RSE serves as a vital platform for the exchange of knowledge and advancements in the dynamic field of remote sensing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信