用分解框架和通用求解器解决条形包装问题:实现、调整和基于强化学习的杂交

IF 4.3 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Fatih Burak Akçay, Maxence Delorme
{"title":"用分解框架和通用求解器解决条形包装问题:实现、调整和基于强化学习的杂交","authors":"Fatih Burak Akçay,&nbsp;Maxence Delorme","doi":"10.1016/j.cor.2025.107276","DOIUrl":null,"url":null,"abstract":"<div><div>In the strip packing problem, the objective is to pack a set of two-dimensional items into a strip of fixed width such that the total height of the packing is minimized. The current state-of-the-art exact approach for the problem uses a decomposition framework in which the main problem (MP) fixes the item abscissas and the strip height, whereas the subproblem (SP) determines whether a set of item ordinates resulting in a feasible packing exists. Even though this decomposition framework has already been used several times in the literature, implementation details were often obfuscated, limiting the outreach of the approach. We address this issue by thoroughly describing and testing various builds for this framework, investigating important features such as the way to forbid an infeasible solution in the MP (e.g., by rejecting them or through a no-good cut) and the techniques used to solve the MP and the SP. One of our findings is that a minor implementation tweak such as changing the random seed between two MP iterations can bring the same level of improvement as a more involved feature such as strengthening the no-good cuts. From our extensive experiments, we identify two versions of the framework that produce complementary results: one where the main problem is solved with integer linear programming and the other where it is solved with constraint programming. We then train a reinforcement learning agent to find the best hybridization of these two algorithms and show that the resulting approach obtains state-of-the-art results on benchmark instances.</div></div>","PeriodicalId":10542,"journal":{"name":"Computers & Operations Research","volume":"185 ","pages":"Article 107276"},"PeriodicalIF":4.3000,"publicationDate":"2025-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solving the strip packing problem with a decomposition framework and a generic solver: Implementation, tuning, and reinforcement-learning-based hybridization\",\"authors\":\"Fatih Burak Akçay,&nbsp;Maxence Delorme\",\"doi\":\"10.1016/j.cor.2025.107276\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In the strip packing problem, the objective is to pack a set of two-dimensional items into a strip of fixed width such that the total height of the packing is minimized. The current state-of-the-art exact approach for the problem uses a decomposition framework in which the main problem (MP) fixes the item abscissas and the strip height, whereas the subproblem (SP) determines whether a set of item ordinates resulting in a feasible packing exists. Even though this decomposition framework has already been used several times in the literature, implementation details were often obfuscated, limiting the outreach of the approach. We address this issue by thoroughly describing and testing various builds for this framework, investigating important features such as the way to forbid an infeasible solution in the MP (e.g., by rejecting them or through a no-good cut) and the techniques used to solve the MP and the SP. One of our findings is that a minor implementation tweak such as changing the random seed between two MP iterations can bring the same level of improvement as a more involved feature such as strengthening the no-good cuts. From our extensive experiments, we identify two versions of the framework that produce complementary results: one where the main problem is solved with integer linear programming and the other where it is solved with constraint programming. We then train a reinforcement learning agent to find the best hybridization of these two algorithms and show that the resulting approach obtains state-of-the-art results on benchmark instances.</div></div>\",\"PeriodicalId\":10542,\"journal\":{\"name\":\"Computers & Operations Research\",\"volume\":\"185 \",\"pages\":\"Article 107276\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Operations Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0305054825003053\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Operations Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0305054825003053","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

在条形包装问题中,目标是将一组二维物品包装成固定宽度的条形,使包装的总高度最小。目前最先进的精确方法是使用一个分解框架,其中主问题(MP)确定项目的横坐标和条形高度,而子问题(SP)确定是否存在一组导致可行包装的项目坐标。尽管这个分解框架已经在文献中被使用了几次,但是实现细节经常被混淆,限制了方法的扩展。为了解决这个问题,我们彻底地描述和测试了这个框架的各种构建,研究了一些重要的特性,比如如何在MP中禁止一个不可行的解决方案(例如:我们的发现之一是,一个小的执行调整(如改变两次MP迭代之间的随机种子)可以带来与更复杂的功能(如加强无益处切割)相同水平的改进。从我们广泛的实验中,我们确定了产生互补结果的框架的两个版本:其中一个主要问题是用整数线性规划解决的,另一个是用约束规划解决的。然后,我们训练一个强化学习代理来找到这两种算法的最佳杂交,并表明所得到的方法在基准实例上获得了最先进的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Solving the strip packing problem with a decomposition framework and a generic solver: Implementation, tuning, and reinforcement-learning-based hybridization
In the strip packing problem, the objective is to pack a set of two-dimensional items into a strip of fixed width such that the total height of the packing is minimized. The current state-of-the-art exact approach for the problem uses a decomposition framework in which the main problem (MP) fixes the item abscissas and the strip height, whereas the subproblem (SP) determines whether a set of item ordinates resulting in a feasible packing exists. Even though this decomposition framework has already been used several times in the literature, implementation details were often obfuscated, limiting the outreach of the approach. We address this issue by thoroughly describing and testing various builds for this framework, investigating important features such as the way to forbid an infeasible solution in the MP (e.g., by rejecting them or through a no-good cut) and the techniques used to solve the MP and the SP. One of our findings is that a minor implementation tweak such as changing the random seed between two MP iterations can bring the same level of improvement as a more involved feature such as strengthening the no-good cuts. From our extensive experiments, we identify two versions of the framework that produce complementary results: one where the main problem is solved with integer linear programming and the other where it is solved with constraint programming. We then train a reinforcement learning agent to find the best hybridization of these two algorithms and show that the resulting approach obtains state-of-the-art results on benchmark instances.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Operations Research
Computers & Operations Research 工程技术-工程:工业
CiteScore
8.60
自引率
8.70%
发文量
292
审稿时长
8.5 months
期刊介绍: Operations research and computers meet in a large number of scientific fields, many of which are of vital current concern to our troubled society. These include, among others, ecology, transportation, safety, reliability, urban planning, economics, inventory control, investment strategy and logistics (including reverse logistics). Computers & Operations Research provides an international forum for the application of computers and operations research techniques to problems in these and related fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信