掺钒FeNiSe4作为高性能析氧电催化剂:硒-镍-铁杂化和钒诱导电子调制的协同效应

IF 5.5 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Sujeet Pandey, , , Shalinee Dubey, , , Varsha Singh, , and , Vellaichamy Ganesan*, 
{"title":"掺钒FeNiSe4作为高性能析氧电催化剂:硒-镍-铁杂化和钒诱导电子调制的协同效应","authors":"Sujeet Pandey,&nbsp;, ,&nbsp;Shalinee Dubey,&nbsp;, ,&nbsp;Varsha Singh,&nbsp;, and ,&nbsp;Vellaichamy Ganesan*,&nbsp;","doi":"10.1021/acsaem.5c02239","DOIUrl":null,"url":null,"abstract":"<p >Hydrogen production through water electrolysis is gaining momentum as a sustainable solution for future energy systems, offering a clean and efficient pathway for energy storage and conversion. In this study, we report the synthesis of vanadium-doped iron–nickel selenide (V@FeNiSe<sub>4</sub>) as a highly active and durable electrocatalyst for the oxygen evolution reaction (OER). Prepared via a simple one-step hydrothermal method, V@FeNiSe<sub>4</sub> demonstrates a large electrochemical surface area and accelerated OER kinetics. Comprehensive characterization employing FT-IR, powder X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, field emission scanning electron microscopy, high-resolution transmission electron microscopy, band-gap estimation, Mott–Schottky studies, electrochemical impedance spectroscopy studies, and BET analysis confirms the successful incorporation of vanadium and reveals a well-defined nanostructure. Ultraviolet photoelectron spectroscopy was utilized to study the valence band maxima and work function of FeNiSe<sub>4</sub> and V@FeNiSe<sub>4</sub>. The remarkable OER performance is attributed to the strong synergistic effects introduced by vanadium doping, which enhance electronic conductivity, increase active site availability, and accelerate charge transfer dynamics. These findings highlight V@FeNiSe<sub>4</sub> as a promising candidate for next-generation water-splitting technologies.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":"8 19","pages":"14530–14541"},"PeriodicalIF":5.5000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vanadium-Doped FeNiSe4 as a High-Performance Oxygen Evolution Electrocatalyst: Synergistic Effects of Se–Ni–Fe Hybridization and Vanadium-Induced Electronic Modulation\",\"authors\":\"Sujeet Pandey,&nbsp;, ,&nbsp;Shalinee Dubey,&nbsp;, ,&nbsp;Varsha Singh,&nbsp;, and ,&nbsp;Vellaichamy Ganesan*,&nbsp;\",\"doi\":\"10.1021/acsaem.5c02239\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Hydrogen production through water electrolysis is gaining momentum as a sustainable solution for future energy systems, offering a clean and efficient pathway for energy storage and conversion. In this study, we report the synthesis of vanadium-doped iron–nickel selenide (V@FeNiSe<sub>4</sub>) as a highly active and durable electrocatalyst for the oxygen evolution reaction (OER). Prepared via a simple one-step hydrothermal method, V@FeNiSe<sub>4</sub> demonstrates a large electrochemical surface area and accelerated OER kinetics. Comprehensive characterization employing FT-IR, powder X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, field emission scanning electron microscopy, high-resolution transmission electron microscopy, band-gap estimation, Mott–Schottky studies, electrochemical impedance spectroscopy studies, and BET analysis confirms the successful incorporation of vanadium and reveals a well-defined nanostructure. Ultraviolet photoelectron spectroscopy was utilized to study the valence band maxima and work function of FeNiSe<sub>4</sub> and V@FeNiSe<sub>4</sub>. The remarkable OER performance is attributed to the strong synergistic effects introduced by vanadium doping, which enhance electronic conductivity, increase active site availability, and accelerate charge transfer dynamics. These findings highlight V@FeNiSe<sub>4</sub> as a promising candidate for next-generation water-splitting technologies.</p>\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":\"8 19\",\"pages\":\"14530–14541\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsaem.5c02239\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaem.5c02239","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

通过水电解制氢作为未来能源系统的可持续解决方案正在获得动力,为能源储存和转换提供了清洁高效的途径。在这项研究中,我们报道了合成钒掺杂铁镍硒化物(V@FeNiSe4)作为一种高活性和耐用的析氧反应(OER)电催化剂。通过简单的一步水热法制备,V@FeNiSe4具有较大的电化学表面积和加速的OER动力学。采用FT-IR,粉末x射线衍射,拉曼光谱,x射线光电子能谱,场发射扫描电镜,高分辨率透射电镜,带隙估计,莫特-肖特基研究,电化学阻抗谱研究和BET分析的综合表征证实了钒的成功结合,并揭示了明确的纳米结构。利用紫外光电子能谱法研究了FeNiSe4和V@FeNiSe4的价带最大值和功函数。卓越的OER性能归功于钒掺杂引入的强协同效应,增强了电子电导率,增加了活性位点的可用性,加速了电荷转移动力学。这些发现突出了V@FeNiSe4作为下一代水分解技术的有希望的候选者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Vanadium-Doped FeNiSe4 as a High-Performance Oxygen Evolution Electrocatalyst: Synergistic Effects of Se–Ni–Fe Hybridization and Vanadium-Induced Electronic Modulation

Vanadium-Doped FeNiSe4 as a High-Performance Oxygen Evolution Electrocatalyst: Synergistic Effects of Se–Ni–Fe Hybridization and Vanadium-Induced Electronic Modulation

Hydrogen production through water electrolysis is gaining momentum as a sustainable solution for future energy systems, offering a clean and efficient pathway for energy storage and conversion. In this study, we report the synthesis of vanadium-doped iron–nickel selenide (V@FeNiSe4) as a highly active and durable electrocatalyst for the oxygen evolution reaction (OER). Prepared via a simple one-step hydrothermal method, V@FeNiSe4 demonstrates a large electrochemical surface area and accelerated OER kinetics. Comprehensive characterization employing FT-IR, powder X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, field emission scanning electron microscopy, high-resolution transmission electron microscopy, band-gap estimation, Mott–Schottky studies, electrochemical impedance spectroscopy studies, and BET analysis confirms the successful incorporation of vanadium and reveals a well-defined nanostructure. Ultraviolet photoelectron spectroscopy was utilized to study the valence band maxima and work function of FeNiSe4 and V@FeNiSe4. The remarkable OER performance is attributed to the strong synergistic effects introduced by vanadium doping, which enhance electronic conductivity, increase active site availability, and accelerate charge transfer dynamics. These findings highlight V@FeNiSe4 as a promising candidate for next-generation water-splitting technologies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信