碘化铯的加入使低温氧化镍的高效和热稳定的倒钙钛矿太阳能电池成为可能

IF 5.5 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Xin-Kai Gao, , , Chien-Cheng Li, , , Yu-Hsuan Lai, , , Tzu-Yu Huang, , , Yu-Chuan Huang, , , Chung-Chi Yang, , and , Chih-Shan Tan*, 
{"title":"碘化铯的加入使低温氧化镍的高效和热稳定的倒钙钛矿太阳能电池成为可能","authors":"Xin-Kai Gao,&nbsp;, ,&nbsp;Chien-Cheng Li,&nbsp;, ,&nbsp;Yu-Hsuan Lai,&nbsp;, ,&nbsp;Tzu-Yu Huang,&nbsp;, ,&nbsp;Yu-Chuan Huang,&nbsp;, ,&nbsp;Chung-Chi Yang,&nbsp;, and ,&nbsp;Chih-Shan Tan*,&nbsp;","doi":"10.1021/acsaem.5c02241","DOIUrl":null,"url":null,"abstract":"<p >Achieving efficient, stable, and flexible perovskite solar cells (PSCs) requires low-temperature processing and precise interfacial control at the nanoscale. Here, we develop a cesium iodide (CsI) incorporation strategy for nickel oxide (NiO<sub><i>x</i></sub>) hole transport layers processed at 100 °C to improve the performance of inverted PSCs. CsI incorporation improves the conductivity and energy level alignment of NiO<sub><i>x</i></sub> while enabling partial CsI diffusion into the perovskite layer. This interfacial modification leads to enhanced crystallinity, enlarged grain size, and reduced trap density in the perovskite film. The optimized device exhibits a power conversion efficiency of 24.1%, with excellent thermal stability─retaining 89% of its initial efficiency after 42 days at 85 °C. This work demonstrates an effective route for nanoscale interfacial engineering toward high-performance, low-temperature PSCs.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":"8 19","pages":"14576–14583"},"PeriodicalIF":5.5000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acsaem.5c02241","citationCount":"0","resultStr":"{\"title\":\"Cesium Iodide Incorporation Enables High-Efficiency and Thermally Stable Inverted Perovskite Solar Cells with Low-Temperature NiOx\",\"authors\":\"Xin-Kai Gao,&nbsp;, ,&nbsp;Chien-Cheng Li,&nbsp;, ,&nbsp;Yu-Hsuan Lai,&nbsp;, ,&nbsp;Tzu-Yu Huang,&nbsp;, ,&nbsp;Yu-Chuan Huang,&nbsp;, ,&nbsp;Chung-Chi Yang,&nbsp;, and ,&nbsp;Chih-Shan Tan*,&nbsp;\",\"doi\":\"10.1021/acsaem.5c02241\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Achieving efficient, stable, and flexible perovskite solar cells (PSCs) requires low-temperature processing and precise interfacial control at the nanoscale. Here, we develop a cesium iodide (CsI) incorporation strategy for nickel oxide (NiO<sub><i>x</i></sub>) hole transport layers processed at 100 °C to improve the performance of inverted PSCs. CsI incorporation improves the conductivity and energy level alignment of NiO<sub><i>x</i></sub> while enabling partial CsI diffusion into the perovskite layer. This interfacial modification leads to enhanced crystallinity, enlarged grain size, and reduced trap density in the perovskite film. The optimized device exhibits a power conversion efficiency of 24.1%, with excellent thermal stability─retaining 89% of its initial efficiency after 42 days at 85 °C. This work demonstrates an effective route for nanoscale interfacial engineering toward high-performance, low-temperature PSCs.</p>\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":\"8 19\",\"pages\":\"14576–14583\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/pdf/10.1021/acsaem.5c02241\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsaem.5c02241\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaem.5c02241","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

实现高效、稳定和灵活的钙钛矿太阳能电池(PSCs)需要低温加工和精确的纳米级界面控制。在这里,我们开发了一种碘化铯(CsI)掺入策略,用于在100°C下加工的氧化镍(NiOx)空穴传输层,以提高倒置psc的性能。加入CsI提高了NiOx的电导率和能级排列,同时使部分CsI扩散到钙钛矿层中。这种界面修饰导致钙钛矿薄膜的结晶度增强,晶粒尺寸增大,陷阱密度降低。优化后的器件的功率转换效率为24.1%,具有优异的热稳定性,在85℃下加热42天后仍保持89%的初始效率。这项工作为实现高性能、低温psc的纳米级界面工程提供了一条有效途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cesium Iodide Incorporation Enables High-Efficiency and Thermally Stable Inverted Perovskite Solar Cells with Low-Temperature NiOx

Achieving efficient, stable, and flexible perovskite solar cells (PSCs) requires low-temperature processing and precise interfacial control at the nanoscale. Here, we develop a cesium iodide (CsI) incorporation strategy for nickel oxide (NiOx) hole transport layers processed at 100 °C to improve the performance of inverted PSCs. CsI incorporation improves the conductivity and energy level alignment of NiOx while enabling partial CsI diffusion into the perovskite layer. This interfacial modification leads to enhanced crystallinity, enlarged grain size, and reduced trap density in the perovskite film. The optimized device exhibits a power conversion efficiency of 24.1%, with excellent thermal stability─retaining 89% of its initial efficiency after 42 days at 85 °C. This work demonstrates an effective route for nanoscale interfacial engineering toward high-performance, low-temperature PSCs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信