机器学习辅助下无铂RuNiCo纳米笼在酸性介质中电催化氢氧化反应的开发

IF 5.5 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Colin A. Tadgell, , , Masaru Kato*, , , Sae Dieb, , , Keitaro Sodeyama, , , Takahito Hoshi, , , Koshiro Suzuki, , , Bohao Du, , , Takeshi Watanabe, , and , Ichizo Yagi*, 
{"title":"机器学习辅助下无铂RuNiCo纳米笼在酸性介质中电催化氢氧化反应的开发","authors":"Colin A. Tadgell,&nbsp;, ,&nbsp;Masaru Kato*,&nbsp;, ,&nbsp;Sae Dieb,&nbsp;, ,&nbsp;Keitaro Sodeyama,&nbsp;, ,&nbsp;Takahito Hoshi,&nbsp;, ,&nbsp;Koshiro Suzuki,&nbsp;, ,&nbsp;Bohao Du,&nbsp;, ,&nbsp;Takeshi Watanabe,&nbsp;, and ,&nbsp;Ichizo Yagi*,&nbsp;","doi":"10.1021/acsaem.5c02113","DOIUrl":null,"url":null,"abstract":"<p >Through data-driven synthesis involving 24 experiments from 16,384 possible combinations (&lt;1%), we developed two optimal electrocatalysts for the hydrogen oxidation reaction (HOR) in acidic media: PtIrRuNiCo nanowires and Pt-free RuNiCo nanocages. The objective function obtained in the Bayesian optimization (BO) process is highly correlated with the experimental current density for the HOR. The RuNiCo nanocages exhibited higher HOR activity than Ru because of the suppression of the surface oxide formation. Our BO-assisted approach accelerates the development of highly active electrocatalysts without requiring high-throughput synthesis.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":"8 19","pages":"14052–14057"},"PeriodicalIF":5.5000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine Learning-Assisted Development of Platinum-Free RuNiCo Nanocages for Electrocatalytic Hydrogen Oxidation Reaction in Acidic Media\",\"authors\":\"Colin A. Tadgell,&nbsp;, ,&nbsp;Masaru Kato*,&nbsp;, ,&nbsp;Sae Dieb,&nbsp;, ,&nbsp;Keitaro Sodeyama,&nbsp;, ,&nbsp;Takahito Hoshi,&nbsp;, ,&nbsp;Koshiro Suzuki,&nbsp;, ,&nbsp;Bohao Du,&nbsp;, ,&nbsp;Takeshi Watanabe,&nbsp;, and ,&nbsp;Ichizo Yagi*,&nbsp;\",\"doi\":\"10.1021/acsaem.5c02113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Through data-driven synthesis involving 24 experiments from 16,384 possible combinations (&lt;1%), we developed two optimal electrocatalysts for the hydrogen oxidation reaction (HOR) in acidic media: PtIrRuNiCo nanowires and Pt-free RuNiCo nanocages. The objective function obtained in the Bayesian optimization (BO) process is highly correlated with the experimental current density for the HOR. The RuNiCo nanocages exhibited higher HOR activity than Ru because of the suppression of the surface oxide formation. Our BO-assisted approach accelerates the development of highly active electrocatalysts without requiring high-throughput synthesis.</p>\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":\"8 19\",\"pages\":\"14052–14057\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsaem.5c02113\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaem.5c02113","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

通过数据驱动合成,我们从16,384种可能的组合(<1%)中进行了24次实验,开发了两种最佳的酸性介质中氢氧化反应(HOR)的电催化剂:PtIrRuNiCo纳米线和不含pt的RuNiCo纳米笼。在贝叶斯优化(BO)过程中得到的目标函数与实验电流密度高度相关。由于抑制了表面氧化物的形成,RuNiCo纳米笼表现出比Ru更高的HOR活性。我们的bo辅助方法加速了高活性电催化剂的开发,而不需要高通量合成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Machine Learning-Assisted Development of Platinum-Free RuNiCo Nanocages for Electrocatalytic Hydrogen Oxidation Reaction in Acidic Media

Machine Learning-Assisted Development of Platinum-Free RuNiCo Nanocages for Electrocatalytic Hydrogen Oxidation Reaction in Acidic Media

Through data-driven synthesis involving 24 experiments from 16,384 possible combinations (<1%), we developed two optimal electrocatalysts for the hydrogen oxidation reaction (HOR) in acidic media: PtIrRuNiCo nanowires and Pt-free RuNiCo nanocages. The objective function obtained in the Bayesian optimization (BO) process is highly correlated with the experimental current density for the HOR. The RuNiCo nanocages exhibited higher HOR activity than Ru because of the suppression of the surface oxide formation. Our BO-assisted approach accelerates the development of highly active electrocatalysts without requiring high-throughput synthesis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信