旋转吡啶酮诱导的四重互穿coii -卟啉氢键有机骨架高效CO2电还原

IF 5.5 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Xinming Li, , , Huan Wang, , , Fengchun Xi, , , Chuanhong Liu, , , Jing Zhang, , , Yuexing Zhang, , , Renjie Li*, , and , Tianyou Peng*, 
{"title":"旋转吡啶酮诱导的四重互穿coii -卟啉氢键有机骨架高效CO2电还原","authors":"Xinming Li,&nbsp;, ,&nbsp;Huan Wang,&nbsp;, ,&nbsp;Fengchun Xi,&nbsp;, ,&nbsp;Chuanhong Liu,&nbsp;, ,&nbsp;Jing Zhang,&nbsp;, ,&nbsp;Yuexing Zhang,&nbsp;, ,&nbsp;Renjie Li*,&nbsp;, and ,&nbsp;Tianyou Peng*,&nbsp;","doi":"10.1021/acsaem.5c02127","DOIUrl":null,"url":null,"abstract":"<p >Examples of hydrogen(H)-bonded organic frameworks (HOFs) employed in the field of catalysis are rare, especially in terms of the potential for using hydrogen bonding in electrocatalytic processes. For mimicking the linking modes of multi-H-bonds in DNA base pairs owning specific CO<sub>2</sub> adsorption capacity to construct HOFs with a more stable stacking structure, herein, Co<sup>II</sup>-5,10,15,20-tetra(4-hydryl-3-pyridyl)porphyrin (CoTOPyP) is designed and synthesized and then successfully crystallized into the HOF (HOF-CoTOPyP), where Co<sup>II</sup>-porphyrin units are interconnected via rotating pyridone-induced H-bonds, creating a tetra-coordinated, interpenetrated framework. The resulting HOF-CoTOPyP exhibits excellent electrocatalytic reduction of carbon dioxide (CO<sub>2</sub>ER) performance with a CO Faradaic efficiency [FE(CO)] of up to 98%. Mechanistic and theoretical studies reveal a transformative innovation: the HOF’s unique architecture with rotational pyridones can facilitate CO<sub>2</sub> adsorption and transport, as well as product evolution during the CO<sub>2</sub>ER process, where there exist two distinct CO intermediates, atop-adsorbed CO (CO<sub>atop</sub>) and H-bond linked CO (CO<sub>H-Bonding</sub>), and the latter plays a dominant role via a H-bond promotion CO<sub>2</sub>ER mechanism. The present study not only deepens our mechanistic understanding of how to enhance the CO<sub>2</sub>ER performance via H-bonding but also provides valuable insights for the future design and development of advanced HOFs with structural and functional versatilities for broader catalytic applications.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":"8 19","pages":"14467–14476"},"PeriodicalIF":5.5000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rotating Pyridone-Induced 4-Fold Interpenetrated CoII-Porphyrin Hydrogen-Bonded Organic Framework for Efficient CO2 Electroreduction\",\"authors\":\"Xinming Li,&nbsp;, ,&nbsp;Huan Wang,&nbsp;, ,&nbsp;Fengchun Xi,&nbsp;, ,&nbsp;Chuanhong Liu,&nbsp;, ,&nbsp;Jing Zhang,&nbsp;, ,&nbsp;Yuexing Zhang,&nbsp;, ,&nbsp;Renjie Li*,&nbsp;, and ,&nbsp;Tianyou Peng*,&nbsp;\",\"doi\":\"10.1021/acsaem.5c02127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Examples of hydrogen(H)-bonded organic frameworks (HOFs) employed in the field of catalysis are rare, especially in terms of the potential for using hydrogen bonding in electrocatalytic processes. For mimicking the linking modes of multi-H-bonds in DNA base pairs owning specific CO<sub>2</sub> adsorption capacity to construct HOFs with a more stable stacking structure, herein, Co<sup>II</sup>-5,10,15,20-tetra(4-hydryl-3-pyridyl)porphyrin (CoTOPyP) is designed and synthesized and then successfully crystallized into the HOF (HOF-CoTOPyP), where Co<sup>II</sup>-porphyrin units are interconnected via rotating pyridone-induced H-bonds, creating a tetra-coordinated, interpenetrated framework. The resulting HOF-CoTOPyP exhibits excellent electrocatalytic reduction of carbon dioxide (CO<sub>2</sub>ER) performance with a CO Faradaic efficiency [FE(CO)] of up to 98%. Mechanistic and theoretical studies reveal a transformative innovation: the HOF’s unique architecture with rotational pyridones can facilitate CO<sub>2</sub> adsorption and transport, as well as product evolution during the CO<sub>2</sub>ER process, where there exist two distinct CO intermediates, atop-adsorbed CO (CO<sub>atop</sub>) and H-bond linked CO (CO<sub>H-Bonding</sub>), and the latter plays a dominant role via a H-bond promotion CO<sub>2</sub>ER mechanism. The present study not only deepens our mechanistic understanding of how to enhance the CO<sub>2</sub>ER performance via H-bonding but also provides valuable insights for the future design and development of advanced HOFs with structural and functional versatilities for broader catalytic applications.</p>\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":\"8 19\",\"pages\":\"14467–14476\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsaem.5c02127\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaem.5c02127","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

氢(H)键有机框架(HOFs)应用于催化领域的例子很少,特别是在电催化过程中使用氢键的潜力方面。为了模拟具有特定CO2吸附能力的DNA碱基对中多个氢键的连接模式,构建具有更稳定堆叠结构的HOF,本文设计并合成了coii -5,10,15,20-四(4-羟基-3-吡啶基)卟啉(CoTOPyP),并成功结晶成HOF (HOF-CoTOPyP),其中coii -卟啉单元通过旋转吡啶酮诱导的氢键相互连接,形成了一个四协调、互穿的框架。所得HOF-CoTOPyP表现出优异的电催化还原二氧化碳(CO2ER)性能,CO法拉第效率[FE(CO)]高达98%。机制和理论研究揭示了一个革命性的创新:HOF具有旋转吡啶酮的独特结构,可以促进CO2在CO2ER过程中的吸附和运输,以及产物的进化,其中存在两种不同的CO中间体,顶部吸附CO (COatop)和氢键连接CO (COH-Bonding),后者通过氢键促进CO2ER机制起主导作用。本研究不仅加深了我们对如何通过氢键提高CO2ER性能的机理理解,而且为未来设计和开发具有结构和功能多功能性的先进hof提供了有价值的见解,以实现更广泛的催化应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Rotating Pyridone-Induced 4-Fold Interpenetrated CoII-Porphyrin Hydrogen-Bonded Organic Framework for Efficient CO2 Electroreduction

Rotating Pyridone-Induced 4-Fold Interpenetrated CoII-Porphyrin Hydrogen-Bonded Organic Framework for Efficient CO2 Electroreduction

Examples of hydrogen(H)-bonded organic frameworks (HOFs) employed in the field of catalysis are rare, especially in terms of the potential for using hydrogen bonding in electrocatalytic processes. For mimicking the linking modes of multi-H-bonds in DNA base pairs owning specific CO2 adsorption capacity to construct HOFs with a more stable stacking structure, herein, CoII-5,10,15,20-tetra(4-hydryl-3-pyridyl)porphyrin (CoTOPyP) is designed and synthesized and then successfully crystallized into the HOF (HOF-CoTOPyP), where CoII-porphyrin units are interconnected via rotating pyridone-induced H-bonds, creating a tetra-coordinated, interpenetrated framework. The resulting HOF-CoTOPyP exhibits excellent electrocatalytic reduction of carbon dioxide (CO2ER) performance with a CO Faradaic efficiency [FE(CO)] of up to 98%. Mechanistic and theoretical studies reveal a transformative innovation: the HOF’s unique architecture with rotational pyridones can facilitate CO2 adsorption and transport, as well as product evolution during the CO2ER process, where there exist two distinct CO intermediates, atop-adsorbed CO (COatop) and H-bond linked CO (COH-Bonding), and the latter plays a dominant role via a H-bond promotion CO2ER mechanism. The present study not only deepens our mechanistic understanding of how to enhance the CO2ER performance via H-bonding but also provides valuable insights for the future design and development of advanced HOFs with structural and functional versatilities for broader catalytic applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信