定制三phyite - nafepo4阴极:一条通向可持续钠离子电池的途径

IF 5.5 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Ramtin Hessam, , , Montserrat Galceran*, , , Youssof Shekibi, , , Luke A. O’Dell, , , Lucas Rosson, , , Matthew Boot-Handford, , , Patrick C. Howlett, , , Maria Forsyth, , and , Robert Kerr*, 
{"title":"定制三phyite - nafepo4阴极:一条通向可持续钠离子电池的途径","authors":"Ramtin Hessam,&nbsp;, ,&nbsp;Montserrat Galceran*,&nbsp;, ,&nbsp;Youssof Shekibi,&nbsp;, ,&nbsp;Luke A. O’Dell,&nbsp;, ,&nbsp;Lucas Rosson,&nbsp;, ,&nbsp;Matthew Boot-Handford,&nbsp;, ,&nbsp;Patrick C. Howlett,&nbsp;, ,&nbsp;Maria Forsyth,&nbsp;, and ,&nbsp;Robert Kerr*,&nbsp;","doi":"10.1021/acsaem.5c01735","DOIUrl":null,"url":null,"abstract":"<p >In this study, the properties of triphylite-NaFePO<sub>4</sub> (NFP) sodium-ion battery cathode powders produced via a chemical conversion route from various starting LiFePO<sub>4</sub> (LFP) powders are presented and compared. Lithium was first extracted from the LFP using sodium persulfate, where over 95% of Li was removed from the LFPs. The delithiated samples were then sodiated using different sodiating agents, namely, sodium thiosulfate and sodium iodide. The resulting NFP materials were characterized using X-ray diffraction (XRD) and inductively coupled plasma atomic emission spectroscopy (ICP-AES), before final electrochemical testing in a sodium half-cell configuration. The findings confirm that sodium iodide is an effective reagent for the complete chemical sodiation of FePO<sub>4</sub> without compromising the integrity of the carbon coating of the starting LFP. Furthermore, this work provides key insights to the processing parameters and the influence of the starting LFP morphological and electrochemical properties. Raman spectroscopy showed that the LFPs with a lower <i>I</i><sub>D</sub>/<i>I</i><sub>G</sub> ratio and platelet-like morphology resulted in better performing NFPs. Electrochemical results show that the best-performing LFP with a capacity of 155 mAh/g (93% of the theoretical capacity) produced the highest capacity NFP, delivering a capacity of 127 mAh/g (∼90% of the theoretical capacity).</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":"8 19","pages":"14160–14170"},"PeriodicalIF":5.5000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tailoring Triphylite-NaFePO4 Cathodes: A Pathway to Sustainable Sodium-Ion Batteries\",\"authors\":\"Ramtin Hessam,&nbsp;, ,&nbsp;Montserrat Galceran*,&nbsp;, ,&nbsp;Youssof Shekibi,&nbsp;, ,&nbsp;Luke A. O’Dell,&nbsp;, ,&nbsp;Lucas Rosson,&nbsp;, ,&nbsp;Matthew Boot-Handford,&nbsp;, ,&nbsp;Patrick C. Howlett,&nbsp;, ,&nbsp;Maria Forsyth,&nbsp;, and ,&nbsp;Robert Kerr*,&nbsp;\",\"doi\":\"10.1021/acsaem.5c01735\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >In this study, the properties of triphylite-NaFePO<sub>4</sub> (NFP) sodium-ion battery cathode powders produced via a chemical conversion route from various starting LiFePO<sub>4</sub> (LFP) powders are presented and compared. Lithium was first extracted from the LFP using sodium persulfate, where over 95% of Li was removed from the LFPs. The delithiated samples were then sodiated using different sodiating agents, namely, sodium thiosulfate and sodium iodide. The resulting NFP materials were characterized using X-ray diffraction (XRD) and inductively coupled plasma atomic emission spectroscopy (ICP-AES), before final electrochemical testing in a sodium half-cell configuration. The findings confirm that sodium iodide is an effective reagent for the complete chemical sodiation of FePO<sub>4</sub> without compromising the integrity of the carbon coating of the starting LFP. Furthermore, this work provides key insights to the processing parameters and the influence of the starting LFP morphological and electrochemical properties. Raman spectroscopy showed that the LFPs with a lower <i>I</i><sub>D</sub>/<i>I</i><sub>G</sub> ratio and platelet-like morphology resulted in better performing NFPs. Electrochemical results show that the best-performing LFP with a capacity of 155 mAh/g (93% of the theoretical capacity) produced the highest capacity NFP, delivering a capacity of 127 mAh/g (∼90% of the theoretical capacity).</p>\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":\"8 19\",\"pages\":\"14160–14170\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsaem.5c01735\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaem.5c01735","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,介绍并比较了由不同的LiFePO4 (LFP)起始粉末经化学转化法制备的三phyite - nafepo4 (NFP)钠离子电池正极粉末的性能。首先用过硫酸钠从LFP中提取锂,其中95%以上的锂被从LFP中去除。然后用不同的酸化剂(即硫代硫酸钠和碘化钠)对稀释后的样品进行酸化。利用x射线衍射(XRD)和电感耦合等离子体原子发射光谱(ICP-AES)对NFP材料进行了表征,然后在钠半电池结构下进行了最终的电化学测试。研究结果证实,碘化钠是一种有效的试剂,可以在不影响初始LFP碳涂层完整性的情况下完全化学酸化FePO4。此外,这项工作提供了关键的见解,工艺参数和启动LFP形态和电化学性能的影响。拉曼光谱显示,具有较低ID/IG比和血小板样形态的lfp可以产生更好的nfp。电化学结果表明,性能最好的LFP容量为155 mAh/g(理论容量的93%),可产生最高容量的NFP,容量为127 mAh/g(理论容量的90%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Tailoring Triphylite-NaFePO4 Cathodes: A Pathway to Sustainable Sodium-Ion Batteries

Tailoring Triphylite-NaFePO4 Cathodes: A Pathway to Sustainable Sodium-Ion Batteries

In this study, the properties of triphylite-NaFePO4 (NFP) sodium-ion battery cathode powders produced via a chemical conversion route from various starting LiFePO4 (LFP) powders are presented and compared. Lithium was first extracted from the LFP using sodium persulfate, where over 95% of Li was removed from the LFPs. The delithiated samples were then sodiated using different sodiating agents, namely, sodium thiosulfate and sodium iodide. The resulting NFP materials were characterized using X-ray diffraction (XRD) and inductively coupled plasma atomic emission spectroscopy (ICP-AES), before final electrochemical testing in a sodium half-cell configuration. The findings confirm that sodium iodide is an effective reagent for the complete chemical sodiation of FePO4 without compromising the integrity of the carbon coating of the starting LFP. Furthermore, this work provides key insights to the processing parameters and the influence of the starting LFP morphological and electrochemical properties. Raman spectroscopy showed that the LFPs with a lower ID/IG ratio and platelet-like morphology resulted in better performing NFPs. Electrochemical results show that the best-performing LFP with a capacity of 155 mAh/g (93% of the theoretical capacity) produced the highest capacity NFP, delivering a capacity of 127 mAh/g (∼90% of the theoretical capacity).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信