钙钛矿-硅串联太阳能电池的气候特征设计及降解率的影响

IF 5.5 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Karthik Raitani*,  and , Pradeep R. Nair*, 
{"title":"钙钛矿-硅串联太阳能电池的气候特征设计及降解率的影响","authors":"Karthik Raitani*,&nbsp; and ,&nbsp;Pradeep R. Nair*,&nbsp;","doi":"10.1021/acsaem.5c01634","DOIUrl":null,"url":null,"abstract":"<p >The quest for optimal perovskite for tandem cell configurations is challenging, as it involves several factors ranging from device-level performance under field conditions to degradation rates and cost. Here, we first highlight the limitations of traditional detailed balance or Shockley–Queisser (SQ) analysis toward the design of Perovskite/Silicon tandem solar cells. Through well-calibrated numerical simulations, we evaluate geographic location-specific annual energy yield (EY) and quantify the influence of temperature-dependent material and transport parameters. Our results indicate that the EY scales in a near-identical manner with the top cell band gap (<i>E</i><sub>gT</sub>) for various geographic locations. In comparison to SQ analysis, our simulations predict a 2-fold relaxation in the target degradation rates at which perovskites over a broad range of band gaps could yield a comparable levelized cost of electricity (LCOE). These insights are of broad interest for the development of perovskite materials and test protocols to evaluate the stability of Perovskite-Silicon tandem solar cells.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":"8 19","pages":"14141–14148"},"PeriodicalIF":5.5000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prospects for Climate-Specific Design of Perovskite-Silicon Tandem Solar Cells and the Influence of Degradation Rates\",\"authors\":\"Karthik Raitani*,&nbsp; and ,&nbsp;Pradeep R. Nair*,&nbsp;\",\"doi\":\"10.1021/acsaem.5c01634\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The quest for optimal perovskite for tandem cell configurations is challenging, as it involves several factors ranging from device-level performance under field conditions to degradation rates and cost. Here, we first highlight the limitations of traditional detailed balance or Shockley–Queisser (SQ) analysis toward the design of Perovskite/Silicon tandem solar cells. Through well-calibrated numerical simulations, we evaluate geographic location-specific annual energy yield (EY) and quantify the influence of temperature-dependent material and transport parameters. Our results indicate that the EY scales in a near-identical manner with the top cell band gap (<i>E</i><sub>gT</sub>) for various geographic locations. In comparison to SQ analysis, our simulations predict a 2-fold relaxation in the target degradation rates at which perovskites over a broad range of band gaps could yield a comparable levelized cost of electricity (LCOE). These insights are of broad interest for the development of perovskite materials and test protocols to evaluate the stability of Perovskite-Silicon tandem solar cells.</p>\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":\"8 19\",\"pages\":\"14141–14148\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsaem.5c01634\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaem.5c01634","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

为串联电池配置寻找最佳钙钛矿具有挑战性,因为它涉及几个因素,从现场条件下的设备级性能到降解率和成本。在这里,我们首先强调了传统的细节平衡或Shockley-Queisser (SQ)分析在钙钛矿/硅串联太阳能电池设计中的局限性。通过精心校准的数值模拟,我们评估了地理位置特定的年能源产量(EY),并量化了温度相关材料和运输参数的影响。我们的研究结果表明,在不同的地理位置,EY的尺度与顶单元带隙(EgT)几乎相同。与SQ分析相比,我们的模拟预测了目标降解率的2倍弛豫,在这种弛豫下,钙钛矿在广泛的带隙范围内可以产生相当的平准化电力成本(LCOE)。这些见解对于钙钛矿材料的开发和评估钙钛矿-硅串联太阳能电池稳定性的测试方案具有广泛的意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Prospects for Climate-Specific Design of Perovskite-Silicon Tandem Solar Cells and the Influence of Degradation Rates

Prospects for Climate-Specific Design of Perovskite-Silicon Tandem Solar Cells and the Influence of Degradation Rates

The quest for optimal perovskite for tandem cell configurations is challenging, as it involves several factors ranging from device-level performance under field conditions to degradation rates and cost. Here, we first highlight the limitations of traditional detailed balance or Shockley–Queisser (SQ) analysis toward the design of Perovskite/Silicon tandem solar cells. Through well-calibrated numerical simulations, we evaluate geographic location-specific annual energy yield (EY) and quantify the influence of temperature-dependent material and transport parameters. Our results indicate that the EY scales in a near-identical manner with the top cell band gap (EgT) for various geographic locations. In comparison to SQ analysis, our simulations predict a 2-fold relaxation in the target degradation rates at which perovskites over a broad range of band gaps could yield a comparable levelized cost of electricity (LCOE). These insights are of broad interest for the development of perovskite materials and test protocols to evaluate the stability of Perovskite-Silicon tandem solar cells.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信