二维GaSe/ZrTeS4异质结构的超高载流子迁移率和增强光催化活性:DFT研究

IF 5.5 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Yi-Lin Lu, , , Chun-Chieh Lin, , , Pei-Hsuan Cho, , , Fu-Heng Chen, , , Chia-Cheng Lee, , and , Chen-Hao Yeh*, 
{"title":"二维GaSe/ZrTeS4异质结构的超高载流子迁移率和增强光催化活性:DFT研究","authors":"Yi-Lin Lu,&nbsp;, ,&nbsp;Chun-Chieh Lin,&nbsp;, ,&nbsp;Pei-Hsuan Cho,&nbsp;, ,&nbsp;Fu-Heng Chen,&nbsp;, ,&nbsp;Chia-Cheng Lee,&nbsp;, and ,&nbsp;Chen-Hao Yeh*,&nbsp;","doi":"10.1021/acsaem.5c02570","DOIUrl":null,"url":null,"abstract":"<p >Photocatalytic water splitting offers a sustainable pathway for producing green hydrogen. Recently, two-dimensional (2D) heterostructures have shown promise in enhancing photocatalytic efficiency. In this study, we employ density functional theory (DFT) to investigate the GaSe/ZrTeS<sub>4</sub> van der Waals heterostructure. Calculations using the HSE06 functional reveal a direct bandgap of 1.70 eV and a type-II band alignment, which facilitates efficient separation of photogenerated electron–hole pairs. Optical analysis shows strong absorption in the visible-light region, which is critical for solar energy utilization. Band alignment indicates favorable redox potentials for both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER). Under light illumination, Gibbs free energy analysis suggests that HER can proceed spontaneously on the ZrTeS<sub>4</sub> side. In contrast, the OER on the GaSe side requires an external potential of 1.15 V under acidic conditions; however, under alkaline conditions, the reaction becomes thermodynamically favorable without bias. The heterostructure also exhibits ultrahigh carrier mobilities of 2513.71 cm<sup>2 </sup> V<sup>–1</sup> s<sup>–1</sup> for electrons and 7396.81 cm<sup>2 </sup> V<sup>–1</sup> s<sup>–1</sup> for holes. Furthermore, the calculated solar-to-hydrogen (STH) efficiency reaches a remarkably high value of 40%, which remains unchanged across acidic, neutral, and alkaline environments, suggesting that GaSe/ZrTeS<sub>4</sub> is a potential 2D heterostructure for overall water splitting.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":"8 19","pages":"14856–14867"},"PeriodicalIF":5.5000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acsaem.5c02570","citationCount":"0","resultStr":"{\"title\":\"Ultrahigh Carrier Mobility and Enhanced Photocatalytic Activity in 2D GaSe/ZrTeS4 Heterostructures for Solar Water Splitting: A DFT Study\",\"authors\":\"Yi-Lin Lu,&nbsp;, ,&nbsp;Chun-Chieh Lin,&nbsp;, ,&nbsp;Pei-Hsuan Cho,&nbsp;, ,&nbsp;Fu-Heng Chen,&nbsp;, ,&nbsp;Chia-Cheng Lee,&nbsp;, and ,&nbsp;Chen-Hao Yeh*,&nbsp;\",\"doi\":\"10.1021/acsaem.5c02570\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Photocatalytic water splitting offers a sustainable pathway for producing green hydrogen. Recently, two-dimensional (2D) heterostructures have shown promise in enhancing photocatalytic efficiency. In this study, we employ density functional theory (DFT) to investigate the GaSe/ZrTeS<sub>4</sub> van der Waals heterostructure. Calculations using the HSE06 functional reveal a direct bandgap of 1.70 eV and a type-II band alignment, which facilitates efficient separation of photogenerated electron–hole pairs. Optical analysis shows strong absorption in the visible-light region, which is critical for solar energy utilization. Band alignment indicates favorable redox potentials for both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER). Under light illumination, Gibbs free energy analysis suggests that HER can proceed spontaneously on the ZrTeS<sub>4</sub> side. In contrast, the OER on the GaSe side requires an external potential of 1.15 V under acidic conditions; however, under alkaline conditions, the reaction becomes thermodynamically favorable without bias. The heterostructure also exhibits ultrahigh carrier mobilities of 2513.71 cm<sup>2 </sup> V<sup>–1</sup> s<sup>–1</sup> for electrons and 7396.81 cm<sup>2 </sup> V<sup>–1</sup> s<sup>–1</sup> for holes. Furthermore, the calculated solar-to-hydrogen (STH) efficiency reaches a remarkably high value of 40%, which remains unchanged across acidic, neutral, and alkaline environments, suggesting that GaSe/ZrTeS<sub>4</sub> is a potential 2D heterostructure for overall water splitting.</p>\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":\"8 19\",\"pages\":\"14856–14867\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/pdf/10.1021/acsaem.5c02570\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsaem.5c02570\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaem.5c02570","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

光催化水分解为生产绿色氢提供了一条可持续的途径。最近,二维(2D)异质结构在提高光催化效率方面显示出希望。在本研究中,我们采用密度泛函理论(DFT)研究了GaSe/ZrTeS4的范德华异质结构。利用HSE06函数的计算显示了1.70 eV的直接带隙和ii型带对准,这有助于光生电子-空穴对的有效分离。光学分析表明,在可见光区域有很强的吸收,这对太阳能的利用至关重要。条带排列表明,析氢反应(HER)和析氧反应(OER)都具有良好的氧化还原电位。在光照下,Gibbs自由能分析表明,HER可以在ZrTeS4侧自发进行。相反,在酸性条件下,GaSe侧的OER需要1.15 V的外部电位;然而,在碱性条件下,反应在热力学上是有利的,没有偏倚。异质结构还表现出极高的载流子迁移率,电子为2513.71 cm2 V-1 s-1,空穴为7396.81 cm2 V-1 s-1。此外,计算出的太阳能制氢(STH)效率高达40%,在酸性、中性和碱性环境下都保持不变,这表明GaSe/ZrTeS4是一种潜在的2D异质结构,可以进行整体的水分解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ultrahigh Carrier Mobility and Enhanced Photocatalytic Activity in 2D GaSe/ZrTeS4 Heterostructures for Solar Water Splitting: A DFT Study

Photocatalytic water splitting offers a sustainable pathway for producing green hydrogen. Recently, two-dimensional (2D) heterostructures have shown promise in enhancing photocatalytic efficiency. In this study, we employ density functional theory (DFT) to investigate the GaSe/ZrTeS4 van der Waals heterostructure. Calculations using the HSE06 functional reveal a direct bandgap of 1.70 eV and a type-II band alignment, which facilitates efficient separation of photogenerated electron–hole pairs. Optical analysis shows strong absorption in the visible-light region, which is critical for solar energy utilization. Band alignment indicates favorable redox potentials for both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER). Under light illumination, Gibbs free energy analysis suggests that HER can proceed spontaneously on the ZrTeS4 side. In contrast, the OER on the GaSe side requires an external potential of 1.15 V under acidic conditions; however, under alkaline conditions, the reaction becomes thermodynamically favorable without bias. The heterostructure also exhibits ultrahigh carrier mobilities of 2513.71 cm2  V–1 s–1 for electrons and 7396.81 cm2  V–1 s–1 for holes. Furthermore, the calculated solar-to-hydrogen (STH) efficiency reaches a remarkably high value of 40%, which remains unchanged across acidic, neutral, and alkaline environments, suggesting that GaSe/ZrTeS4 is a potential 2D heterostructure for overall water splitting.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信