浸拉式环境压力x射线光电子能谱对析氧反应电催化剂的评价

IF 5.5 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Dino Aegerter, , , Emiliana Fabbri*, , , Zbynek Novotny, , , Mario Borlaf, , , Nur Sena Yüzbasi, , , Nicolò Comini, , , J. Trey Diulus, , , Anthony Boucly, , , Daniele Pergolesi, , and , Thomas J. Schmidt, 
{"title":"浸拉式环境压力x射线光电子能谱对析氧反应电催化剂的评价","authors":"Dino Aegerter,&nbsp;, ,&nbsp;Emiliana Fabbri*,&nbsp;, ,&nbsp;Zbynek Novotny,&nbsp;, ,&nbsp;Mario Borlaf,&nbsp;, ,&nbsp;Nur Sena Yüzbasi,&nbsp;, ,&nbsp;Nicolò Comini,&nbsp;, ,&nbsp;J. Trey Diulus,&nbsp;, ,&nbsp;Anthony Boucly,&nbsp;, ,&nbsp;Daniele Pergolesi,&nbsp;, and ,&nbsp;Thomas J. Schmidt,&nbsp;","doi":"10.1021/acsaem.5c02252","DOIUrl":null,"url":null,"abstract":"<p >In situ investigations of solid–liquid interfaces are crucial for gaining a fundamental understanding of electrocatalytic processes. Dip-and-pull ambient pressure X-ray photoelectron spectroscopy (APXPS) enables such investigations by analyzing an electrocatalyst surface (solid) through the covering electrolyte layer (liquid) with an applied electrochemical potential. This stable solid–liquid interface is created by vertically “dipping” and then “pulling” an electrode from a bulk electrolyte solution. The resulting electrolyte layer has a decreasing thickness toward the upper electrode, allowing in situ probing of the electrocatalyst surface in this upper region. However, detecting representative electrocatalyst surface changes remains challenging with dip-and-pull APXPS. To address the challenge, this study experimentally evaluates electrochemical and spectroscopic aspects of dip-and-pull APXPS by investigating thin films of Ni<sub>1–<i>x</i></sub>Fe<sub><i>x</i></sub>O<sub><i>y</i></sub> oxygen evolution reaction (OER) electrocatalysts. Here, two technical limitations are revealed: (1) missing Faradaic reactions (i.e., redox and OER) in the electrocatalyst surface probing region and (2) low spectroscopic surface-sensitivity with the typically used tender X-rays. Limitation (1) is discovered with a modified electrode design that enables OER activity measurements, indicating limited ionic conductance along the vertically thinning electrolyte layer. This strongly suppresses the studied Faradaic reactions and hinders operando investigations of OER electrocatalyst thin films in the upper electrode region, where their surfaces are probed. To minimize limitations (1) and (2), the findings suggest changing electrochemical potential only when the electrode is completely dipped in the bulk electrolyte to enhance surface modifications and using lower energetic photons at higher flux to improve the surface-sensitivity. Moreover, cyclic voltammetry is presented as an electrochemical conditioning method to maximize the spectroscopic detectability of OER electrocatalyst surface changes. Overall, this dip-and-pull APXPS evaluation provides fundamental insights and suggestions that will further improve the technique for investigating OER electrocatalysts.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":"8 19","pages":"14554–14567"},"PeriodicalIF":5.5000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acsaem.5c02252","citationCount":"0","resultStr":"{\"title\":\"Evaluation of Dip-And-Pull Ambient Pressure X-ray Photoelectron Spectroscopy for Investigating Oxygen Evolution Reaction Electrocatalysts\",\"authors\":\"Dino Aegerter,&nbsp;, ,&nbsp;Emiliana Fabbri*,&nbsp;, ,&nbsp;Zbynek Novotny,&nbsp;, ,&nbsp;Mario Borlaf,&nbsp;, ,&nbsp;Nur Sena Yüzbasi,&nbsp;, ,&nbsp;Nicolò Comini,&nbsp;, ,&nbsp;J. Trey Diulus,&nbsp;, ,&nbsp;Anthony Boucly,&nbsp;, ,&nbsp;Daniele Pergolesi,&nbsp;, and ,&nbsp;Thomas J. Schmidt,&nbsp;\",\"doi\":\"10.1021/acsaem.5c02252\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >In situ investigations of solid–liquid interfaces are crucial for gaining a fundamental understanding of electrocatalytic processes. Dip-and-pull ambient pressure X-ray photoelectron spectroscopy (APXPS) enables such investigations by analyzing an electrocatalyst surface (solid) through the covering electrolyte layer (liquid) with an applied electrochemical potential. This stable solid–liquid interface is created by vertically “dipping” and then “pulling” an electrode from a bulk electrolyte solution. The resulting electrolyte layer has a decreasing thickness toward the upper electrode, allowing in situ probing of the electrocatalyst surface in this upper region. However, detecting representative electrocatalyst surface changes remains challenging with dip-and-pull APXPS. To address the challenge, this study experimentally evaluates electrochemical and spectroscopic aspects of dip-and-pull APXPS by investigating thin films of Ni<sub>1–<i>x</i></sub>Fe<sub><i>x</i></sub>O<sub><i>y</i></sub> oxygen evolution reaction (OER) electrocatalysts. Here, two technical limitations are revealed: (1) missing Faradaic reactions (i.e., redox and OER) in the electrocatalyst surface probing region and (2) low spectroscopic surface-sensitivity with the typically used tender X-rays. Limitation (1) is discovered with a modified electrode design that enables OER activity measurements, indicating limited ionic conductance along the vertically thinning electrolyte layer. This strongly suppresses the studied Faradaic reactions and hinders operando investigations of OER electrocatalyst thin films in the upper electrode region, where their surfaces are probed. To minimize limitations (1) and (2), the findings suggest changing electrochemical potential only when the electrode is completely dipped in the bulk electrolyte to enhance surface modifications and using lower energetic photons at higher flux to improve the surface-sensitivity. Moreover, cyclic voltammetry is presented as an electrochemical conditioning method to maximize the spectroscopic detectability of OER electrocatalyst surface changes. Overall, this dip-and-pull APXPS evaluation provides fundamental insights and suggestions that will further improve the technique for investigating OER electrocatalysts.</p>\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":\"8 19\",\"pages\":\"14554–14567\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/pdf/10.1021/acsaem.5c02252\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsaem.5c02252\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaem.5c02252","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

固液界面的原位研究对于获得电催化过程的基本理解至关重要。浸拉式环境压力x射线光电子能谱(APXPS)通过应用电化学电位分析电催化剂表面(固体)覆盖的电解质层(液体),从而实现了这种研究。这种稳定的固液界面是通过垂直“浸入”然后从散装电解质溶液中“拉”电极而产生的。所得到的电解质层具有向上电极方向减小的厚度,允许在该上区域对电催化剂表面进行原位探测。然而,使用浸拉式APXPS检测具有代表性的电催化剂表面变化仍然具有挑战性。为了解决这一挑战,本研究通过研究Ni1-xFexOy析氧反应(OER)电催化剂的薄膜,对浸拉式APXPS的电化学和光谱方面进行了实验评估。在这里,揭示了两个技术局限性:(1)在电催化剂表面探测区域缺少法拉第反应(即氧化还原和OER);(2)通常使用的软x射线的低光谱表面灵敏度。限制(1)是通过改进电极设计发现的,该电极设计允许OER活度测量,表明沿垂直变薄的电解质层的离子电导率有限。这强烈抑制了所研究的法拉第反应,并阻碍了OER电催化剂薄膜在其表面被探测的上电极区域的operando研究。为了最大限度地减少限制(1)和(2),研究结果表明,只有当电极完全浸入体电解质时才能改变电化学电位,以增强表面修饰,并使用高通量的低能量光子来提高表面灵敏度。此外,循环伏安法是一种电化学调节方法,可以最大限度地提高OER电催化剂表面变化的光谱可检测性。总的来说,这种浸拉式APXPS评价提供了基本的见解和建议,将进一步改进研究OER电催化剂的技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluation of Dip-And-Pull Ambient Pressure X-ray Photoelectron Spectroscopy for Investigating Oxygen Evolution Reaction Electrocatalysts

In situ investigations of solid–liquid interfaces are crucial for gaining a fundamental understanding of electrocatalytic processes. Dip-and-pull ambient pressure X-ray photoelectron spectroscopy (APXPS) enables such investigations by analyzing an electrocatalyst surface (solid) through the covering electrolyte layer (liquid) with an applied electrochemical potential. This stable solid–liquid interface is created by vertically “dipping” and then “pulling” an electrode from a bulk electrolyte solution. The resulting electrolyte layer has a decreasing thickness toward the upper electrode, allowing in situ probing of the electrocatalyst surface in this upper region. However, detecting representative electrocatalyst surface changes remains challenging with dip-and-pull APXPS. To address the challenge, this study experimentally evaluates electrochemical and spectroscopic aspects of dip-and-pull APXPS by investigating thin films of Ni1–xFexOy oxygen evolution reaction (OER) electrocatalysts. Here, two technical limitations are revealed: (1) missing Faradaic reactions (i.e., redox and OER) in the electrocatalyst surface probing region and (2) low spectroscopic surface-sensitivity with the typically used tender X-rays. Limitation (1) is discovered with a modified electrode design that enables OER activity measurements, indicating limited ionic conductance along the vertically thinning electrolyte layer. This strongly suppresses the studied Faradaic reactions and hinders operando investigations of OER electrocatalyst thin films in the upper electrode region, where their surfaces are probed. To minimize limitations (1) and (2), the findings suggest changing electrochemical potential only when the electrode is completely dipped in the bulk electrolyte to enhance surface modifications and using lower energetic photons at higher flux to improve the surface-sensitivity. Moreover, cyclic voltammetry is presented as an electrochemical conditioning method to maximize the spectroscopic detectability of OER electrocatalyst surface changes. Overall, this dip-and-pull APXPS evaluation provides fundamental insights and suggestions that will further improve the technique for investigating OER electrocatalysts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信