Nathan Ellmer, Rogelio Ortigosa, Jesús Martínez-Frutos, Roman Poya, Johann Sienz, Antonio J. Gil
{"title":"基于梯度增强高斯预测的基于拉伸的超弹性机电本构元模型","authors":"Nathan Ellmer, Rogelio Ortigosa, Jesús Martínez-Frutos, Roman Poya, Johann Sienz, Antonio J. Gil","doi":"10.1016/j.cma.2025.118349","DOIUrl":null,"url":null,"abstract":"This paper introduces a new approach to developing electromechanical constitutive metamodels via the use of Gradient Enhanced Gaussian Predictors (Kriging). The formulation uses principal stretches for the isotropic mechanics, invariants for the electrostatics and coupling terms, and accounts for anisotropy through the relevant inclusion of anisotropic invariants associated with a respective symmetry integrity basis. Three novelties are presented in this paper. The first is the use of orthogonal projections to identify the most appropriate set of inputs - related to material anisotropy - for use in the metamodel. By projecting the stress and electric field data into several derivative bases - defined for each anisotropic class - and then reconstructing the quantities, the errors in reconstruction can be assessed thus inferring the most appropriate class of anisotropy. Furthermore, the procedure forms a pre-processing stage and is particularly useful when an underlying model is completely unknown as seen when modelling Relative Volume Elements. The second novelty arises from the use of a hybrid formulation, namely the principal stretches for isotropic mechanics and the electromechanical anisotropic invariants. This is beneficial during the projection procedure in reducing the cases where the projection matrix becomes singular but requires careful development of the correlation function to maintain physical symmetry conditions. Thirdly, the electromechanical metamodels are calibrated upon the concentric styled data before being integrated within a Finite Element framework and tested upon a range of challenging simulations including bending actuators with induced torsion, frilling due to bending with selected electrode placement, as well as buckling plates tested with three rank-one laminate materials with increasing levels of anisotropy due to physical contrasts. The successful calibration and implementation of the metamodels can be witnessed amongst the wide range of presented numerical examples.","PeriodicalId":55222,"journal":{"name":"Computer Methods in Applied Mechanics and Engineering","volume":"23 1","pages":""},"PeriodicalIF":7.3000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stretch-based hyperelastic electromechanical constitutive metamodels via gradient enhanced Gaussian predictors using hierarchical structure discovery\",\"authors\":\"Nathan Ellmer, Rogelio Ortigosa, Jesús Martínez-Frutos, Roman Poya, Johann Sienz, Antonio J. Gil\",\"doi\":\"10.1016/j.cma.2025.118349\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a new approach to developing electromechanical constitutive metamodels via the use of Gradient Enhanced Gaussian Predictors (Kriging). The formulation uses principal stretches for the isotropic mechanics, invariants for the electrostatics and coupling terms, and accounts for anisotropy through the relevant inclusion of anisotropic invariants associated with a respective symmetry integrity basis. Three novelties are presented in this paper. The first is the use of orthogonal projections to identify the most appropriate set of inputs - related to material anisotropy - for use in the metamodel. By projecting the stress and electric field data into several derivative bases - defined for each anisotropic class - and then reconstructing the quantities, the errors in reconstruction can be assessed thus inferring the most appropriate class of anisotropy. Furthermore, the procedure forms a pre-processing stage and is particularly useful when an underlying model is completely unknown as seen when modelling Relative Volume Elements. The second novelty arises from the use of a hybrid formulation, namely the principal stretches for isotropic mechanics and the electromechanical anisotropic invariants. This is beneficial during the projection procedure in reducing the cases where the projection matrix becomes singular but requires careful development of the correlation function to maintain physical symmetry conditions. Thirdly, the electromechanical metamodels are calibrated upon the concentric styled data before being integrated within a Finite Element framework and tested upon a range of challenging simulations including bending actuators with induced torsion, frilling due to bending with selected electrode placement, as well as buckling plates tested with three rank-one laminate materials with increasing levels of anisotropy due to physical contrasts. The successful calibration and implementation of the metamodels can be witnessed amongst the wide range of presented numerical examples.\",\"PeriodicalId\":55222,\"journal\":{\"name\":\"Computer Methods in Applied Mechanics and Engineering\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2025-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Methods in Applied Mechanics and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cma.2025.118349\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Applied Mechanics and Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.cma.2025.118349","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Stretch-based hyperelastic electromechanical constitutive metamodels via gradient enhanced Gaussian predictors using hierarchical structure discovery
This paper introduces a new approach to developing electromechanical constitutive metamodels via the use of Gradient Enhanced Gaussian Predictors (Kriging). The formulation uses principal stretches for the isotropic mechanics, invariants for the electrostatics and coupling terms, and accounts for anisotropy through the relevant inclusion of anisotropic invariants associated with a respective symmetry integrity basis. Three novelties are presented in this paper. The first is the use of orthogonal projections to identify the most appropriate set of inputs - related to material anisotropy - for use in the metamodel. By projecting the stress and electric field data into several derivative bases - defined for each anisotropic class - and then reconstructing the quantities, the errors in reconstruction can be assessed thus inferring the most appropriate class of anisotropy. Furthermore, the procedure forms a pre-processing stage and is particularly useful when an underlying model is completely unknown as seen when modelling Relative Volume Elements. The second novelty arises from the use of a hybrid formulation, namely the principal stretches for isotropic mechanics and the electromechanical anisotropic invariants. This is beneficial during the projection procedure in reducing the cases where the projection matrix becomes singular but requires careful development of the correlation function to maintain physical symmetry conditions. Thirdly, the electromechanical metamodels are calibrated upon the concentric styled data before being integrated within a Finite Element framework and tested upon a range of challenging simulations including bending actuators with induced torsion, frilling due to bending with selected electrode placement, as well as buckling plates tested with three rank-one laminate materials with increasing levels of anisotropy due to physical contrasts. The successful calibration and implementation of the metamodels can be witnessed amongst the wide range of presented numerical examples.
期刊介绍:
Computer Methods in Applied Mechanics and Engineering stands as a cornerstone in the realm of computational science and engineering. With a history spanning over five decades, the journal has been a key platform for disseminating papers on advanced mathematical modeling and numerical solutions. Interdisciplinary in nature, these contributions encompass mechanics, mathematics, computer science, and various scientific disciplines. The journal welcomes a broad range of computational methods addressing the simulation, analysis, and design of complex physical problems, making it a vital resource for researchers in the field.