全保偏非线性放大环镜光纤激光器中光谱缺口深度可调的周期耗散孤子动力学

IF 5.6 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Hongyu Chen , Weitao He , Chengbo Sun , Ziping Huang , Zhihao Wang , Shuangxi Peng , Qingbin Zhang , Peixiang Lu
{"title":"全保偏非线性放大环镜光纤激光器中光谱缺口深度可调的周期耗散孤子动力学","authors":"Hongyu Chen ,&nbsp;Weitao He ,&nbsp;Chengbo Sun ,&nbsp;Ziping Huang ,&nbsp;Zhihao Wang ,&nbsp;Shuangxi Peng ,&nbsp;Qingbin Zhang ,&nbsp;Peixiang Lu","doi":"10.1016/j.chaos.2025.117330","DOIUrl":null,"url":null,"abstract":"<div><div>Control of dissipative solitons has long been a key research focus due to their high energy and compressibility in ultrafast fiber systems. However, achieving controllable dissipative solitons in all-polarization-maintaining fiber lasers remains a major challenge, owing to the lack of flexible tuning methods to balance nonlinearity, dispersion, gain, and loss. Here, we propose a vector-analysis-based model to elucidate spectral modulation in soliton pulsations, enabling stepwise insight into nonlinear phase shifts and soliton evolution. To explore system behavior and stability, we numerically solve the nonlinear Schrödinger equation (NLSE) under controlled fiber-length variations in a nonlinear amplifying loop mirror (NALM), effectively tuning the relative nonlinear phase shift. Simulations show that precise control of this shift achieves pronounced modulation in both temporal and spectral domains, reveals a classical period-doubling route to chaos, and compensates for nonlinear variation of the gain coefficient itself, thereby facilitating complex dynamical behaviors under tightly coupled conditions. This provides a feasible approach for all-fiber spectral shaping amplification.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"201 ","pages":"Article 117330"},"PeriodicalIF":5.6000,"publicationDate":"2025-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Periodic dissipative soliton dynamics with tunable spectral notch depth in an all-polarization-maintaining nonlinear amplifying loop mirror fiber laser\",\"authors\":\"Hongyu Chen ,&nbsp;Weitao He ,&nbsp;Chengbo Sun ,&nbsp;Ziping Huang ,&nbsp;Zhihao Wang ,&nbsp;Shuangxi Peng ,&nbsp;Qingbin Zhang ,&nbsp;Peixiang Lu\",\"doi\":\"10.1016/j.chaos.2025.117330\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Control of dissipative solitons has long been a key research focus due to their high energy and compressibility in ultrafast fiber systems. However, achieving controllable dissipative solitons in all-polarization-maintaining fiber lasers remains a major challenge, owing to the lack of flexible tuning methods to balance nonlinearity, dispersion, gain, and loss. Here, we propose a vector-analysis-based model to elucidate spectral modulation in soliton pulsations, enabling stepwise insight into nonlinear phase shifts and soliton evolution. To explore system behavior and stability, we numerically solve the nonlinear Schrödinger equation (NLSE) under controlled fiber-length variations in a nonlinear amplifying loop mirror (NALM), effectively tuning the relative nonlinear phase shift. Simulations show that precise control of this shift achieves pronounced modulation in both temporal and spectral domains, reveals a classical period-doubling route to chaos, and compensates for nonlinear variation of the gain coefficient itself, thereby facilitating complex dynamical behaviors under tightly coupled conditions. This provides a feasible approach for all-fiber spectral shaping amplification.</div></div>\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":\"201 \",\"pages\":\"Article 117330\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960077925013438\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077925013438","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

由于耗散孤子具有高能量和可压缩性,其控制一直是超高速光纤系统中的一个研究热点。然而,由于缺乏灵活的调谐方法来平衡非线性、色散、增益和损耗,在全保偏光纤激光器中实现可控耗散孤子仍然是一个主要挑战。在这里,我们提出了一个基于矢量分析的模型来阐明孤子脉动中的频谱调制,从而逐步了解非线性相移和孤子演化。为了探索系统的行为和稳定性,我们在非线性放大环镜(NALM)中数值求解了受控光纤长度变化下的非线性Schrödinger方程(NLSE),有效地调节了相对非线性相移。仿真结果表明,对该位移的精确控制在时域和谱域都实现了明显的调制,揭示了经典的周期加倍混沌路径,并补偿了增益系数本身的非线性变化,从而促进了紧耦合条件下的复杂动力学行为。这为全光纤频谱整形放大提供了一种可行的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Periodic dissipative soliton dynamics with tunable spectral notch depth in an all-polarization-maintaining nonlinear amplifying loop mirror fiber laser
Control of dissipative solitons has long been a key research focus due to their high energy and compressibility in ultrafast fiber systems. However, achieving controllable dissipative solitons in all-polarization-maintaining fiber lasers remains a major challenge, owing to the lack of flexible tuning methods to balance nonlinearity, dispersion, gain, and loss. Here, we propose a vector-analysis-based model to elucidate spectral modulation in soliton pulsations, enabling stepwise insight into nonlinear phase shifts and soliton evolution. To explore system behavior and stability, we numerically solve the nonlinear Schrödinger equation (NLSE) under controlled fiber-length variations in a nonlinear amplifying loop mirror (NALM), effectively tuning the relative nonlinear phase shift. Simulations show that precise control of this shift achieves pronounced modulation in both temporal and spectral domains, reveals a classical period-doubling route to chaos, and compensates for nonlinear variation of the gain coefficient itself, thereby facilitating complex dynamical behaviors under tightly coupled conditions. This provides a feasible approach for all-fiber spectral shaping amplification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信