Jhon F. Puerres , Valdivino V. Junior , Pablo M. Rodriguez
{"title":"树上随机谣言的临界阈值","authors":"Jhon F. Puerres , Valdivino V. Junior , Pablo M. Rodriguez","doi":"10.1016/j.chaos.2025.117373","DOIUrl":null,"url":null,"abstract":"<div><div>The vertices of a tree represent individuals in one of three states: ignorant, spreader, or stifler. A spreader transmits the rumor to any of its nearest ignorant neighbors at rate one. At the same rate, a spreader becomes a stifler after contacting nearest-neighbor spreaders or stiflers. The rumor survives if, at all times, there exists at least one spreader. We consider two extensions and prove phase transition results for rumor survival. First, we consider the infinite Cayley tree of coordination number <span><math><mrow><mi>d</mi><mo>+</mo><mn>1</mn></mrow></math></span>, with <span><math><mrow><mi>d</mi><mo>≥</mo><mn>2</mn></mrow></math></span>, and assume that as soon as an ignorant hears the rumor, the individual becomes spreader with probability <span><math><mi>p</mi></math></span>, or stifler with probability <span><math><mrow><mn>1</mn><mo>−</mo><mi>p</mi></mrow></math></span>. Using coupling with branching processes we prove that for any <span><math><mi>d</mi></math></span> there is a phase transition in <span><math><mi>p</mi></math></span> and localize the critical parameter. By refining this approach, we extend the study to an inhomogeneous tree with hubs of degree <span><math><mrow><mi>d</mi><mo>+</mo><mn>1</mn></mrow></math></span> and other vertices of degree at most <span><math><mrow><mi>k</mi><mo>=</mo><mi>o</mi><mrow><mo>(</mo><mi>d</mi><mo>)</mo></mrow></mrow></math></span>. The purpose of this extension is to illustrate the impact of the distance between hubs on the dissemination of rumors in a network. To this end, we assume that each hub is, on average, connected to <span><math><mrow><mi>α</mi><mrow><mo>(</mo><mi>d</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span> hubs, with <span><math><mrow><mi>α</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow></mrow></math></span>, via paths of length <span><math><mi>h</mi></math></span>. We obtain a phase transition result in <span><math><mi>α</mi></math></span> in terms of <span><math><mrow><mi>d</mi><mo>,</mo><mi>k</mi><mo>,</mo></mrow></math></span> and <span><math><mi>h</mi></math></span>, and we show that in the case of <span><math><mrow><mi>k</mi><mo>=</mo><mi>Θ</mi><mrow><mo>(</mo><mo>log</mo><mi>d</mi><mo>)</mo></mrow></mrow></math></span> phase transition occurs iff <span><math><mrow><mi>h</mi><mo>≲</mo><mi>Θ</mi><mrow><mo>(</mo><mo>log</mo><mi>d</mi><mo>/</mo><mrow><mo>(</mo><mo>log</mo><mo>log</mo><mi>d</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span>.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"201 ","pages":"Article 117373"},"PeriodicalIF":5.6000,"publicationDate":"2025-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Critical thresholds in stochastic rumors on trees\",\"authors\":\"Jhon F. Puerres , Valdivino V. Junior , Pablo M. Rodriguez\",\"doi\":\"10.1016/j.chaos.2025.117373\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The vertices of a tree represent individuals in one of three states: ignorant, spreader, or stifler. A spreader transmits the rumor to any of its nearest ignorant neighbors at rate one. At the same rate, a spreader becomes a stifler after contacting nearest-neighbor spreaders or stiflers. The rumor survives if, at all times, there exists at least one spreader. We consider two extensions and prove phase transition results for rumor survival. First, we consider the infinite Cayley tree of coordination number <span><math><mrow><mi>d</mi><mo>+</mo><mn>1</mn></mrow></math></span>, with <span><math><mrow><mi>d</mi><mo>≥</mo><mn>2</mn></mrow></math></span>, and assume that as soon as an ignorant hears the rumor, the individual becomes spreader with probability <span><math><mi>p</mi></math></span>, or stifler with probability <span><math><mrow><mn>1</mn><mo>−</mo><mi>p</mi></mrow></math></span>. Using coupling with branching processes we prove that for any <span><math><mi>d</mi></math></span> there is a phase transition in <span><math><mi>p</mi></math></span> and localize the critical parameter. By refining this approach, we extend the study to an inhomogeneous tree with hubs of degree <span><math><mrow><mi>d</mi><mo>+</mo><mn>1</mn></mrow></math></span> and other vertices of degree at most <span><math><mrow><mi>k</mi><mo>=</mo><mi>o</mi><mrow><mo>(</mo><mi>d</mi><mo>)</mo></mrow></mrow></math></span>. The purpose of this extension is to illustrate the impact of the distance between hubs on the dissemination of rumors in a network. To this end, we assume that each hub is, on average, connected to <span><math><mrow><mi>α</mi><mrow><mo>(</mo><mi>d</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span> hubs, with <span><math><mrow><mi>α</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow></mrow></math></span>, via paths of length <span><math><mi>h</mi></math></span>. We obtain a phase transition result in <span><math><mi>α</mi></math></span> in terms of <span><math><mrow><mi>d</mi><mo>,</mo><mi>k</mi><mo>,</mo></mrow></math></span> and <span><math><mi>h</mi></math></span>, and we show that in the case of <span><math><mrow><mi>k</mi><mo>=</mo><mi>Θ</mi><mrow><mo>(</mo><mo>log</mo><mi>d</mi><mo>)</mo></mrow></mrow></math></span> phase transition occurs iff <span><math><mrow><mi>h</mi><mo>≲</mo><mi>Θ</mi><mrow><mo>(</mo><mo>log</mo><mi>d</mi><mo>/</mo><mrow><mo>(</mo><mo>log</mo><mo>log</mo><mi>d</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span>.</div></div>\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":\"201 \",\"pages\":\"Article 117373\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960077925013864\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077925013864","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
The vertices of a tree represent individuals in one of three states: ignorant, spreader, or stifler. A spreader transmits the rumor to any of its nearest ignorant neighbors at rate one. At the same rate, a spreader becomes a stifler after contacting nearest-neighbor spreaders or stiflers. The rumor survives if, at all times, there exists at least one spreader. We consider two extensions and prove phase transition results for rumor survival. First, we consider the infinite Cayley tree of coordination number , with , and assume that as soon as an ignorant hears the rumor, the individual becomes spreader with probability , or stifler with probability . Using coupling with branching processes we prove that for any there is a phase transition in and localize the critical parameter. By refining this approach, we extend the study to an inhomogeneous tree with hubs of degree and other vertices of degree at most . The purpose of this extension is to illustrate the impact of the distance between hubs on the dissemination of rumors in a network. To this end, we assume that each hub is, on average, connected to hubs, with , via paths of length . We obtain a phase transition result in in terms of and , and we show that in the case of phase transition occurs iff .
期刊介绍:
Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.