树上随机谣言的临界阈值

IF 5.6 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Jhon F. Puerres , Valdivino V. Junior , Pablo M. Rodriguez
{"title":"树上随机谣言的临界阈值","authors":"Jhon F. Puerres ,&nbsp;Valdivino V. Junior ,&nbsp;Pablo M. Rodriguez","doi":"10.1016/j.chaos.2025.117373","DOIUrl":null,"url":null,"abstract":"<div><div>The vertices of a tree represent individuals in one of three states: ignorant, spreader, or stifler. A spreader transmits the rumor to any of its nearest ignorant neighbors at rate one. At the same rate, a spreader becomes a stifler after contacting nearest-neighbor spreaders or stiflers. The rumor survives if, at all times, there exists at least one spreader. We consider two extensions and prove phase transition results for rumor survival. First, we consider the infinite Cayley tree of coordination number <span><math><mrow><mi>d</mi><mo>+</mo><mn>1</mn></mrow></math></span>, with <span><math><mrow><mi>d</mi><mo>≥</mo><mn>2</mn></mrow></math></span>, and assume that as soon as an ignorant hears the rumor, the individual becomes spreader with probability <span><math><mi>p</mi></math></span>, or stifler with probability <span><math><mrow><mn>1</mn><mo>−</mo><mi>p</mi></mrow></math></span>. Using coupling with branching processes we prove that for any <span><math><mi>d</mi></math></span> there is a phase transition in <span><math><mi>p</mi></math></span> and localize the critical parameter. By refining this approach, we extend the study to an inhomogeneous tree with hubs of degree <span><math><mrow><mi>d</mi><mo>+</mo><mn>1</mn></mrow></math></span> and other vertices of degree at most <span><math><mrow><mi>k</mi><mo>=</mo><mi>o</mi><mrow><mo>(</mo><mi>d</mi><mo>)</mo></mrow></mrow></math></span>. The purpose of this extension is to illustrate the impact of the distance between hubs on the dissemination of rumors in a network. To this end, we assume that each hub is, on average, connected to <span><math><mrow><mi>α</mi><mrow><mo>(</mo><mi>d</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span> hubs, with <span><math><mrow><mi>α</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow></mrow></math></span>, via paths of length <span><math><mi>h</mi></math></span>. We obtain a phase transition result in <span><math><mi>α</mi></math></span> in terms of <span><math><mrow><mi>d</mi><mo>,</mo><mi>k</mi><mo>,</mo></mrow></math></span> and <span><math><mi>h</mi></math></span>, and we show that in the case of <span><math><mrow><mi>k</mi><mo>=</mo><mi>Θ</mi><mrow><mo>(</mo><mo>log</mo><mi>d</mi><mo>)</mo></mrow></mrow></math></span> phase transition occurs iff <span><math><mrow><mi>h</mi><mo>≲</mo><mi>Θ</mi><mrow><mo>(</mo><mo>log</mo><mi>d</mi><mo>/</mo><mrow><mo>(</mo><mo>log</mo><mo>log</mo><mi>d</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span>.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"201 ","pages":"Article 117373"},"PeriodicalIF":5.6000,"publicationDate":"2025-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Critical thresholds in stochastic rumors on trees\",\"authors\":\"Jhon F. Puerres ,&nbsp;Valdivino V. Junior ,&nbsp;Pablo M. Rodriguez\",\"doi\":\"10.1016/j.chaos.2025.117373\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The vertices of a tree represent individuals in one of three states: ignorant, spreader, or stifler. A spreader transmits the rumor to any of its nearest ignorant neighbors at rate one. At the same rate, a spreader becomes a stifler after contacting nearest-neighbor spreaders or stiflers. The rumor survives if, at all times, there exists at least one spreader. We consider two extensions and prove phase transition results for rumor survival. First, we consider the infinite Cayley tree of coordination number <span><math><mrow><mi>d</mi><mo>+</mo><mn>1</mn></mrow></math></span>, with <span><math><mrow><mi>d</mi><mo>≥</mo><mn>2</mn></mrow></math></span>, and assume that as soon as an ignorant hears the rumor, the individual becomes spreader with probability <span><math><mi>p</mi></math></span>, or stifler with probability <span><math><mrow><mn>1</mn><mo>−</mo><mi>p</mi></mrow></math></span>. Using coupling with branching processes we prove that for any <span><math><mi>d</mi></math></span> there is a phase transition in <span><math><mi>p</mi></math></span> and localize the critical parameter. By refining this approach, we extend the study to an inhomogeneous tree with hubs of degree <span><math><mrow><mi>d</mi><mo>+</mo><mn>1</mn></mrow></math></span> and other vertices of degree at most <span><math><mrow><mi>k</mi><mo>=</mo><mi>o</mi><mrow><mo>(</mo><mi>d</mi><mo>)</mo></mrow></mrow></math></span>. The purpose of this extension is to illustrate the impact of the distance between hubs on the dissemination of rumors in a network. To this end, we assume that each hub is, on average, connected to <span><math><mrow><mi>α</mi><mrow><mo>(</mo><mi>d</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span> hubs, with <span><math><mrow><mi>α</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow></mrow></math></span>, via paths of length <span><math><mi>h</mi></math></span>. We obtain a phase transition result in <span><math><mi>α</mi></math></span> in terms of <span><math><mrow><mi>d</mi><mo>,</mo><mi>k</mi><mo>,</mo></mrow></math></span> and <span><math><mi>h</mi></math></span>, and we show that in the case of <span><math><mrow><mi>k</mi><mo>=</mo><mi>Θ</mi><mrow><mo>(</mo><mo>log</mo><mi>d</mi><mo>)</mo></mrow></mrow></math></span> phase transition occurs iff <span><math><mrow><mi>h</mi><mo>≲</mo><mi>Θ</mi><mrow><mo>(</mo><mo>log</mo><mi>d</mi><mo>/</mo><mrow><mo>(</mo><mo>log</mo><mo>log</mo><mi>d</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span>.</div></div>\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":\"201 \",\"pages\":\"Article 117373\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960077925013864\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077925013864","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

树的顶点代表处于以下三种状态之一的个体:无知、扩散或窒息。传播者至少会将谣言传播给最近的无知邻居。以同样的速度,传播者在接触最近的传播者或窒息者后成为窒息者。如果在任何时候,至少有一个传播者存在,谣言就能存活。我们考虑了两种扩展,并证明了谣言生存的相变结果。首先,考虑配位数为d+1且d≥2的无限Cayley树,假设无知者一听到谣言,就以p的概率成为传播者,或以1−p的概率成为窒息者。通过与分支过程的耦合,证明了任意d在p中存在相变,并对临界参数进行了局部化。通过改进这种方法,我们将研究扩展到一个非齐次树,该树的中心次数为d+1,其他顶点的次数最多为k=o(d)。这个扩展的目的是为了说明hub之间的距离对网络中谣言传播的影响。为此,我们假设每个轮毂平均连接到α(d+1)个轮毂,其中α∈(0,1),通过长度为h的路径。我们得到了关于d,k和h的相变结果,并且我们表明,在k=Θ(logd)的情况下,相变发生在h≤Θ(logd/(loggd))。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Critical thresholds in stochastic rumors on trees
The vertices of a tree represent individuals in one of three states: ignorant, spreader, or stifler. A spreader transmits the rumor to any of its nearest ignorant neighbors at rate one. At the same rate, a spreader becomes a stifler after contacting nearest-neighbor spreaders or stiflers. The rumor survives if, at all times, there exists at least one spreader. We consider two extensions and prove phase transition results for rumor survival. First, we consider the infinite Cayley tree of coordination number d+1, with d2, and assume that as soon as an ignorant hears the rumor, the individual becomes spreader with probability p, or stifler with probability 1p. Using coupling with branching processes we prove that for any d there is a phase transition in p and localize the critical parameter. By refining this approach, we extend the study to an inhomogeneous tree with hubs of degree d+1 and other vertices of degree at most k=o(d). The purpose of this extension is to illustrate the impact of the distance between hubs on the dissemination of rumors in a network. To this end, we assume that each hub is, on average, connected to α(d+1) hubs, with α(0,1], via paths of length h. We obtain a phase transition result in α in terms of d,k, and h, and we show that in the case of k=Θ(logd) phase transition occurs iff hΘ(logd/(loglogd)).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信