S. Ares de Parga, Radek Tezaur, Carlos G. Hernández, Charbel Farhat
{"title":"基于非线性投影的模型降阶与机器学习回归的隐空间封闭误差建模","authors":"S. Ares de Parga, Radek Tezaur, Carlos G. Hernández, Charbel Farhat","doi":"10.1016/j.cma.2025.118443","DOIUrl":null,"url":null,"abstract":"A significant advancement in nonlinear projection-based model order reduction (PMOR) is presented through a highly effective methodology. This methodology employs Gaussian process regression (GPR) and radial basis function (RBF) interpolation for closure error modeling in the latent space, offering notable gains in efficiency and expanding the scope of PMOR. Moving beyond the limitations of deep artificial neural networks (ANNs), previously used for this task, this approach provides crucial advantages in terms of interpretability and a reduced demand for extensive training data. The capabilities of GPR and RBFs are showcased in two demanding applications: a two-dimensional parametric inviscid Burgers problem, featuring propagating shocks across the entire computational domain, and a complex three-dimensional turbulent flow simulation around an Ahmed body. The results demonstrate that this innovative approach preserves accuracy and achieves substantial improvements in efficiency and interpretability when contrasted with traditional PMOR and ANN-based closure modeling.","PeriodicalId":55222,"journal":{"name":"Computer Methods in Applied Mechanics and Engineering","volume":"27 1","pages":""},"PeriodicalIF":7.3000,"publicationDate":"2025-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonlinear projection-based model order reduction with machine learning regression for closure error modeling in the latent space\",\"authors\":\"S. Ares de Parga, Radek Tezaur, Carlos G. Hernández, Charbel Farhat\",\"doi\":\"10.1016/j.cma.2025.118443\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A significant advancement in nonlinear projection-based model order reduction (PMOR) is presented through a highly effective methodology. This methodology employs Gaussian process regression (GPR) and radial basis function (RBF) interpolation for closure error modeling in the latent space, offering notable gains in efficiency and expanding the scope of PMOR. Moving beyond the limitations of deep artificial neural networks (ANNs), previously used for this task, this approach provides crucial advantages in terms of interpretability and a reduced demand for extensive training data. The capabilities of GPR and RBFs are showcased in two demanding applications: a two-dimensional parametric inviscid Burgers problem, featuring propagating shocks across the entire computational domain, and a complex three-dimensional turbulent flow simulation around an Ahmed body. The results demonstrate that this innovative approach preserves accuracy and achieves substantial improvements in efficiency and interpretability when contrasted with traditional PMOR and ANN-based closure modeling.\",\"PeriodicalId\":55222,\"journal\":{\"name\":\"Computer Methods in Applied Mechanics and Engineering\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2025-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Methods in Applied Mechanics and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cma.2025.118443\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Applied Mechanics and Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.cma.2025.118443","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Nonlinear projection-based model order reduction with machine learning regression for closure error modeling in the latent space
A significant advancement in nonlinear projection-based model order reduction (PMOR) is presented through a highly effective methodology. This methodology employs Gaussian process regression (GPR) and radial basis function (RBF) interpolation for closure error modeling in the latent space, offering notable gains in efficiency and expanding the scope of PMOR. Moving beyond the limitations of deep artificial neural networks (ANNs), previously used for this task, this approach provides crucial advantages in terms of interpretability and a reduced demand for extensive training data. The capabilities of GPR and RBFs are showcased in two demanding applications: a two-dimensional parametric inviscid Burgers problem, featuring propagating shocks across the entire computational domain, and a complex three-dimensional turbulent flow simulation around an Ahmed body. The results demonstrate that this innovative approach preserves accuracy and achieves substantial improvements in efficiency and interpretability when contrasted with traditional PMOR and ANN-based closure modeling.
期刊介绍:
Computer Methods in Applied Mechanics and Engineering stands as a cornerstone in the realm of computational science and engineering. With a history spanning over five decades, the journal has been a key platform for disseminating papers on advanced mathematical modeling and numerical solutions. Interdisciplinary in nature, these contributions encompass mechanics, mathematics, computer science, and various scientific disciplines. The journal welcomes a broad range of computational methods addressing the simulation, analysis, and design of complex physical problems, making it a vital resource for researchers in the field.