低语廊模光学微腔中项链环孤子的时空动力学

IF 5.6 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Tianle Dai, Qihao Cao, Jiahao Zhang, Wenzhi Lan, Yueyue Wang, Chaoqing Dai
{"title":"低语廊模光学微腔中项链环孤子的时空动力学","authors":"Tianle Dai, Qihao Cao, Jiahao Zhang, Wenzhi Lan, Yueyue Wang, Chaoqing Dai","doi":"10.1016/j.chaos.2025.117370","DOIUrl":null,"url":null,"abstract":"Dynamical characteristics of spatiotemporal necklace ring solitons in the whispering gallery mode optical microcavity is investigated based on the (3 + 1)-dimensional variable-coefficient Lugiato-Lefever equation. An analytical solution for the case without external pumping is obtained. The effects of the azimuthal periodic modulation, noise perturbation, time-varying excitation, topological charge and diffraction parameters on the stability, spatial structure and energy distribution of soliton are analyzed both in the absence and presence of external pumping. The azimuthal periodic modulation can precisely control the number of circumferential lobes in the soliton, with the number of lobes strictly matching the modulation period. The noise perturbation induces only local structural fluctuations, without disrupting the global periodicity. Low-intensity time-varying excitation, in combination with the periodic modulation, can maintain the long-term stability of solitons. The topological charge reconstructs the energy distribution via the phase winding effect, causing the symmetry distortion without altering the maximum amplitude. Linear stability analysis confirms that the diffraction parameter influences the soliton stability by modulating the nonlinear coupling strength, and the smaller diffraction coefficient is more favorable for maintaining the stable evolution. These findings provide a theoretical foundation for controlling the spatiotemporal structure of light fields and the design of nonlinear modes in the whispering-gallery mode microcavity.","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"18 1","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatiotemporal dynamics of necklace ring solitons in the whispering-gallery-mode optical microcavity\",\"authors\":\"Tianle Dai, Qihao Cao, Jiahao Zhang, Wenzhi Lan, Yueyue Wang, Chaoqing Dai\",\"doi\":\"10.1016/j.chaos.2025.117370\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dynamical characteristics of spatiotemporal necklace ring solitons in the whispering gallery mode optical microcavity is investigated based on the (3 + 1)-dimensional variable-coefficient Lugiato-Lefever equation. An analytical solution for the case without external pumping is obtained. The effects of the azimuthal periodic modulation, noise perturbation, time-varying excitation, topological charge and diffraction parameters on the stability, spatial structure and energy distribution of soliton are analyzed both in the absence and presence of external pumping. The azimuthal periodic modulation can precisely control the number of circumferential lobes in the soliton, with the number of lobes strictly matching the modulation period. The noise perturbation induces only local structural fluctuations, without disrupting the global periodicity. Low-intensity time-varying excitation, in combination with the periodic modulation, can maintain the long-term stability of solitons. The topological charge reconstructs the energy distribution via the phase winding effect, causing the symmetry distortion without altering the maximum amplitude. Linear stability analysis confirms that the diffraction parameter influences the soliton stability by modulating the nonlinear coupling strength, and the smaller diffraction coefficient is more favorable for maintaining the stable evolution. These findings provide a theoretical foundation for controlling the spatiotemporal structure of light fields and the design of nonlinear modes in the whispering-gallery mode microcavity.\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1016/j.chaos.2025.117370\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1016/j.chaos.2025.117370","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

基于(3 + 1)维变系数Lugiato-Lefever方程研究了窃窃廊模式光学微腔中时空项链环孤子的动力学特性。得到了无外泵情况下的解析解。分析了在无外加泵浦和有外加泵浦的情况下,方位角周期调制、噪声扰动、时变激励、拓扑电荷和衍射参数对孤子稳定性、空间结构和能量分布的影响。方位角周期调制可以精确控制孤子的周向波瓣数,波瓣数与调制周期严格匹配。噪声扰动只引起局部结构波动,不破坏全局周期性。低强度时变激励与周期调制相结合,可以保持孤子的长期稳定性。拓扑电荷通过相位缠绕效应重构能量分布,在不改变最大振幅的情况下引起对称畸变。线性稳定性分析证实,衍射参数通过调制非线性耦合强度来影响孤子的稳定性,较小的衍射系数更有利于保持孤子的稳定演化。这些研究结果为控制光场时空结构和设计微腔的非线性模式提供了理论基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spatiotemporal dynamics of necklace ring solitons in the whispering-gallery-mode optical microcavity
Dynamical characteristics of spatiotemporal necklace ring solitons in the whispering gallery mode optical microcavity is investigated based on the (3 + 1)-dimensional variable-coefficient Lugiato-Lefever equation. An analytical solution for the case without external pumping is obtained. The effects of the azimuthal periodic modulation, noise perturbation, time-varying excitation, topological charge and diffraction parameters on the stability, spatial structure and energy distribution of soliton are analyzed both in the absence and presence of external pumping. The azimuthal periodic modulation can precisely control the number of circumferential lobes in the soliton, with the number of lobes strictly matching the modulation period. The noise perturbation induces only local structural fluctuations, without disrupting the global periodicity. Low-intensity time-varying excitation, in combination with the periodic modulation, can maintain the long-term stability of solitons. The topological charge reconstructs the energy distribution via the phase winding effect, causing the symmetry distortion without altering the maximum amplitude. Linear stability analysis confirms that the diffraction parameter influences the soliton stability by modulating the nonlinear coupling strength, and the smaller diffraction coefficient is more favorable for maintaining the stable evolution. These findings provide a theoretical foundation for controlling the spatiotemporal structure of light fields and the design of nonlinear modes in the whispering-gallery mode microcavity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信