Hopfield神经网络中多涡旋吸引子的设计与FPAA仿真

IF 5.6 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Jean Luck Randrianantenaina , Ahmet Yasin Baran , Nimet Korkmaz , Recai Kiliç
{"title":"Hopfield神经网络中多涡旋吸引子的设计与FPAA仿真","authors":"Jean Luck Randrianantenaina ,&nbsp;Ahmet Yasin Baran ,&nbsp;Nimet Korkmaz ,&nbsp;Recai Kiliç","doi":"10.1016/j.chaos.2025.117386","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents a memristor-based Hopfield neural network (MHNN) designed to generate multi-scroll chaotic attractors. By employing a novel flux-controlled memristor model, the system exhibits complex nonlinear dynamics, including bifurcations, variations in Lyapunov exponents, and multi-scroll chaotic behavior. To evaluate the randomness and cryptographic suitability of the generated sequences, statistical tests from the NIST SP 800‐22 suite are applied, confirming their high unpredictability. Additionally, the proposed MHNN system is implemented using both discrete analog electronic circuitry and a Field Programmable Analog Array (FPAA) platform, thereby validating the theoretical findings through hardware realization. This hardware facilitates the evaluation of system feasibility and reliability while enabling the rapid prototyping of analog and mixed signal-circuits. These results demonstrate the potential of the MHNN for secure communications, neuromorphic applications, and hardware-based chaos generation.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"201 ","pages":"Article 117386"},"PeriodicalIF":5.6000,"publicationDate":"2025-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and FPAA simulation of multi-scroll attractors in a memristor-based Hopfield neural network\",\"authors\":\"Jean Luck Randrianantenaina ,&nbsp;Ahmet Yasin Baran ,&nbsp;Nimet Korkmaz ,&nbsp;Recai Kiliç\",\"doi\":\"10.1016/j.chaos.2025.117386\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper presents a memristor-based Hopfield neural network (MHNN) designed to generate multi-scroll chaotic attractors. By employing a novel flux-controlled memristor model, the system exhibits complex nonlinear dynamics, including bifurcations, variations in Lyapunov exponents, and multi-scroll chaotic behavior. To evaluate the randomness and cryptographic suitability of the generated sequences, statistical tests from the NIST SP 800‐22 suite are applied, confirming their high unpredictability. Additionally, the proposed MHNN system is implemented using both discrete analog electronic circuitry and a Field Programmable Analog Array (FPAA) platform, thereby validating the theoretical findings through hardware realization. This hardware facilitates the evaluation of system feasibility and reliability while enabling the rapid prototyping of analog and mixed signal-circuits. These results demonstrate the potential of the MHNN for secure communications, neuromorphic applications, and hardware-based chaos generation.</div></div>\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":\"201 \",\"pages\":\"Article 117386\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960077925013992\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077925013992","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种基于记忆电阻的Hopfield神经网络(MHNN),用于生成多涡旋混沌吸引子。通过采用一种新型的磁控忆阻器模型,系统表现出复杂的非线性动力学,包括分岔、李雅普诺夫指数的变化和多涡旋混沌行为。为了评估生成序列的随机性和密码适用性,应用了NIST SP 800‐22套件的统计测试,证实了它们的高不可预测性。此外,所提出的MHNN系统使用离散模拟电子电路和现场可编程模拟阵列(FPAA)平台来实现,从而通过硬件实现验证了理论发现。该硬件有利于系统可行性和可靠性的评估,同时使模拟和混合信号电路的快速原型。这些结果证明了MHNN在安全通信、神经形态应用和基于硬件的混沌生成方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design and FPAA simulation of multi-scroll attractors in a memristor-based Hopfield neural network
This paper presents a memristor-based Hopfield neural network (MHNN) designed to generate multi-scroll chaotic attractors. By employing a novel flux-controlled memristor model, the system exhibits complex nonlinear dynamics, including bifurcations, variations in Lyapunov exponents, and multi-scroll chaotic behavior. To evaluate the randomness and cryptographic suitability of the generated sequences, statistical tests from the NIST SP 800‐22 suite are applied, confirming their high unpredictability. Additionally, the proposed MHNN system is implemented using both discrete analog electronic circuitry and a Field Programmable Analog Array (FPAA) platform, thereby validating the theoretical findings through hardware realization. This hardware facilitates the evaluation of system feasibility and reliability while enabling the rapid prototyping of analog and mixed signal-circuits. These results demonstrate the potential of the MHNN for secure communications, neuromorphic applications, and hardware-based chaos generation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信