复杂系统的时空动力学指标

IF 5.6 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Chenyu Dong , Gabriele Messori , Davide Faranda , Adriano Gualandi , Valerio Lucarini , Gianmarco Mengaldo
{"title":"复杂系统的时空动力学指标","authors":"Chenyu Dong ,&nbsp;Gabriele Messori ,&nbsp;Davide Faranda ,&nbsp;Adriano Gualandi ,&nbsp;Valerio Lucarini ,&nbsp;Gianmarco Mengaldo","doi":"10.1016/j.chaos.2025.117248","DOIUrl":null,"url":null,"abstract":"<div><div>Complex systems span multiple spatial and temporal scales, making their dynamics challenging to understand and predict. This challenge is especially daunting when one wants to study localized and/or rare events. Advances in dynamical systems theory, including the development of state-dependent dynamical indices, namely local dimension and persistence, have provided powerful tools for studying these phenomena. However, existing applications of such indices rely on considering a predefined and fixed spatial domain, which provides a single scalar quantity for the entire region of interest. This aspect prevents understanding the spatially localized dynamical behavior of the system. In this work, we introduce Spatio-temporal Dynamical Indices (SDIs), which leverage the existing framework of state-dependent local dimension and persistence. SDIs are obtained via a sliding window approach, enabling the exploration of space-dependent properties in spatio-temporal data. As an example, we show that we are able to reconcile previously different perspectives on European summertime heatwaves. This result showcases the importance of accounting for spatial scales when performing scale-dependent dynamical analyses.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"201 ","pages":"Article 117248"},"PeriodicalIF":5.6000,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatio-temporal dynamical indices for complex systems\",\"authors\":\"Chenyu Dong ,&nbsp;Gabriele Messori ,&nbsp;Davide Faranda ,&nbsp;Adriano Gualandi ,&nbsp;Valerio Lucarini ,&nbsp;Gianmarco Mengaldo\",\"doi\":\"10.1016/j.chaos.2025.117248\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Complex systems span multiple spatial and temporal scales, making their dynamics challenging to understand and predict. This challenge is especially daunting when one wants to study localized and/or rare events. Advances in dynamical systems theory, including the development of state-dependent dynamical indices, namely local dimension and persistence, have provided powerful tools for studying these phenomena. However, existing applications of such indices rely on considering a predefined and fixed spatial domain, which provides a single scalar quantity for the entire region of interest. This aspect prevents understanding the spatially localized dynamical behavior of the system. In this work, we introduce Spatio-temporal Dynamical Indices (SDIs), which leverage the existing framework of state-dependent local dimension and persistence. SDIs are obtained via a sliding window approach, enabling the exploration of space-dependent properties in spatio-temporal data. As an example, we show that we are able to reconcile previously different perspectives on European summertime heatwaves. This result showcases the importance of accounting for spatial scales when performing scale-dependent dynamical analyses.</div></div>\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":\"201 \",\"pages\":\"Article 117248\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960077925012615\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077925012615","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

复杂系统跨越多个空间和时间尺度,使其动态难以理解和预测。当一个人想要研究局部和/或罕见事件时,这个挑战尤其令人生畏。动力系统理论的进步,包括与状态相关的动力指标,即局部维数和持续性的发展,为研究这些现象提供了有力的工具。然而,这些指标的现有应用依赖于考虑一个预定义的和固定的空间域,它为整个感兴趣的区域提供一个单一的标量量。这方面阻碍了对系统空间局部动力学行为的理解。在这项工作中,我们引入了时空动态指数(sdi),它利用了现有的状态依赖的局部维度和持久性框架。sdi是通过滑动窗口方法获得的,可以探索时空数据中与空间相关的属性。作为一个例子,我们表明我们能够调和以前对欧洲夏季热浪的不同观点。这一结果显示了在执行尺度相关动力学分析时考虑空间尺度的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spatio-temporal dynamical indices for complex systems
Complex systems span multiple spatial and temporal scales, making their dynamics challenging to understand and predict. This challenge is especially daunting when one wants to study localized and/or rare events. Advances in dynamical systems theory, including the development of state-dependent dynamical indices, namely local dimension and persistence, have provided powerful tools for studying these phenomena. However, existing applications of such indices rely on considering a predefined and fixed spatial domain, which provides a single scalar quantity for the entire region of interest. This aspect prevents understanding the spatially localized dynamical behavior of the system. In this work, we introduce Spatio-temporal Dynamical Indices (SDIs), which leverage the existing framework of state-dependent local dimension and persistence. SDIs are obtained via a sliding window approach, enabling the exploration of space-dependent properties in spatio-temporal data. As an example, we show that we are able to reconcile previously different perspectives on European summertime heatwaves. This result showcases the importance of accounting for spatial scales when performing scale-dependent dynamical analyses.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信