梁-颗粒系统的多尺度记忆与非线性动力学

IF 5.6 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Yitong Li , Honghai Zhang , Yuxin Wang , Guangyang Hong
{"title":"梁-颗粒系统的多尺度记忆与非线性动力学","authors":"Yitong Li ,&nbsp;Honghai Zhang ,&nbsp;Yuxin Wang ,&nbsp;Guangyang Hong","doi":"10.1016/j.chaos.2025.117371","DOIUrl":null,"url":null,"abstract":"<div><div>Embedding deformable structures within granular media induces rich nonlinear dynamics characterized by strong memory effects, path dependence, and emergent collective behavior—central themes in complex systems and nonequilibrium science. These phenomena arise from nonlinear interactions spanning micro to macro scales and remain difficult to interpret and predict. Here, we present an integrated framework combining experiments, discrete element simulations, machine learning, and fractional-order modeling to unravel the mechanisms governing these phenomena in beam-driven granular systems. Power spectral density analysis reveals distinct frequency-dependent signatures linked to frictional dissipation and structural anisotropy. Crucially, interpretable neural networks enable us to disentangle the relative contributions of short-time (frictional) and long-time (structural) memory. A fractional-order model is further constructed using a memory kernel that evolves with excitation frequency, successfully reproducing amplitude jumps, hysteresis, and multistable regimes. This approach bridges granular-scale physics with macroscopic system response and demonstrates a path toward data-driven, interpretable modeling of complex nonlinear systems, but also significantly enhances predictive capabilities, providing novel strategies for intelligent granular materials, and robotic control in complex granular environments.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"201 ","pages":"Article 117371"},"PeriodicalIF":5.6000,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiscale memory and nonlinear dynamics in beam-granular systems\",\"authors\":\"Yitong Li ,&nbsp;Honghai Zhang ,&nbsp;Yuxin Wang ,&nbsp;Guangyang Hong\",\"doi\":\"10.1016/j.chaos.2025.117371\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Embedding deformable structures within granular media induces rich nonlinear dynamics characterized by strong memory effects, path dependence, and emergent collective behavior—central themes in complex systems and nonequilibrium science. These phenomena arise from nonlinear interactions spanning micro to macro scales and remain difficult to interpret and predict. Here, we present an integrated framework combining experiments, discrete element simulations, machine learning, and fractional-order modeling to unravel the mechanisms governing these phenomena in beam-driven granular systems. Power spectral density analysis reveals distinct frequency-dependent signatures linked to frictional dissipation and structural anisotropy. Crucially, interpretable neural networks enable us to disentangle the relative contributions of short-time (frictional) and long-time (structural) memory. A fractional-order model is further constructed using a memory kernel that evolves with excitation frequency, successfully reproducing amplitude jumps, hysteresis, and multistable regimes. This approach bridges granular-scale physics with macroscopic system response and demonstrates a path toward data-driven, interpretable modeling of complex nonlinear systems, but also significantly enhances predictive capabilities, providing novel strategies for intelligent granular materials, and robotic control in complex granular environments.</div></div>\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":\"201 \",\"pages\":\"Article 117371\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960077925013840\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077925013840","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

在颗粒介质中嵌入可变形的结构会产生丰富的非线性动力学,其特征是强记忆效应、路径依赖和紧急集体行为——这是复杂系统和非平衡科学的中心主题。这些现象是由微观到宏观尺度的非线性相互作用引起的,很难解释和预测。在这里,我们提出了一个结合实验、离散元素模拟、机器学习和分数阶建模的集成框架,以揭示在光束驱动的颗粒系统中控制这些现象的机制。功率谱密度分析揭示了与摩擦耗散和结构各向异性相关的明显频率依赖特征。至关重要的是,可解释的神经网络使我们能够理清短时记忆(摩擦性记忆)和长时记忆(结构性记忆)的相对贡献。利用随激励频率演化的记忆核进一步构建分数阶模型,成功再现幅度跳跃、迟滞和多稳定状态。该方法将颗粒尺度物理与宏观系统响应连接起来,为复杂非线性系统的数据驱动、可解释建模提供了一条途径,同时也显著增强了预测能力,为复杂颗粒环境中的智能颗粒材料和机器人控制提供了新策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiscale memory and nonlinear dynamics in beam-granular systems
Embedding deformable structures within granular media induces rich nonlinear dynamics characterized by strong memory effects, path dependence, and emergent collective behavior—central themes in complex systems and nonequilibrium science. These phenomena arise from nonlinear interactions spanning micro to macro scales and remain difficult to interpret and predict. Here, we present an integrated framework combining experiments, discrete element simulations, machine learning, and fractional-order modeling to unravel the mechanisms governing these phenomena in beam-driven granular systems. Power spectral density analysis reveals distinct frequency-dependent signatures linked to frictional dissipation and structural anisotropy. Crucially, interpretable neural networks enable us to disentangle the relative contributions of short-time (frictional) and long-time (structural) memory. A fractional-order model is further constructed using a memory kernel that evolves with excitation frequency, successfully reproducing amplitude jumps, hysteresis, and multistable regimes. This approach bridges granular-scale physics with macroscopic system response and demonstrates a path toward data-driven, interpretable modeling of complex nonlinear systems, but also significantly enhances predictive capabilities, providing novel strategies for intelligent granular materials, and robotic control in complex granular environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信