基于强化学习的空间囚徒困境中的稀释、扩散与共生

IF 5.6 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Gustavo C. Mangold, Mendeli H. Vainstein, Heitor C.M. Fernandes
{"title":"基于强化学习的空间囚徒困境中的稀释、扩散与共生","authors":"Gustavo C. Mangold,&nbsp;Mendeli H. Vainstein,&nbsp;Heitor C.M. Fernandes","doi":"10.1016/j.chaos.2025.117382","DOIUrl":null,"url":null,"abstract":"<div><div>Recent studies on spatial prisoner’s dilemma games with reinforcement learning have shown that static agents can learn to cooperate through a variety of mechanisms, including noise injection, different learning algorithms, and access to neighbours’ payoff information. In this work, we use an independent multi-agent Q-learning algorithm to investigate the effects of dilution and mobility in the spatial version of the prisoner’s dilemma. Within this framework, different possible actions for the algorithm are defined, linking our results to those of the classical, non-reinforcement learning spatial prisoner’s dilemma. This highlights the algorithm’s versatility in modelling diverse game-theoretical scenarios and demonstrates its potential as a benchmarking tool. Our findings reveal a range of effects, including evidence that games with fixed update rules can be qualitatively equivalent to those with learned ones. Additionally, we observe the emergence of a symbiotic mutualistic effect between populations when multiple actions are defined.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"201 ","pages":"Article 117382"},"PeriodicalIF":5.6000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dilution, diffusion and symbiosis in spatial prisoner’s dilemma with reinforcement learning\",\"authors\":\"Gustavo C. Mangold,&nbsp;Mendeli H. Vainstein,&nbsp;Heitor C.M. Fernandes\",\"doi\":\"10.1016/j.chaos.2025.117382\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Recent studies on spatial prisoner’s dilemma games with reinforcement learning have shown that static agents can learn to cooperate through a variety of mechanisms, including noise injection, different learning algorithms, and access to neighbours’ payoff information. In this work, we use an independent multi-agent Q-learning algorithm to investigate the effects of dilution and mobility in the spatial version of the prisoner’s dilemma. Within this framework, different possible actions for the algorithm are defined, linking our results to those of the classical, non-reinforcement learning spatial prisoner’s dilemma. This highlights the algorithm’s versatility in modelling diverse game-theoretical scenarios and demonstrates its potential as a benchmarking tool. Our findings reveal a range of effects, including evidence that games with fixed update rules can be qualitatively equivalent to those with learned ones. Additionally, we observe the emergence of a symbiotic mutualistic effect between populations when multiple actions are defined.</div></div>\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":\"201 \",\"pages\":\"Article 117382\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960077925013955\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077925013955","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

基于强化学习的空间囚徒困境博弈研究表明,静态智能体可以通过各种机制学习合作,包括噪声注入、不同的学习算法和获取邻居的收益信息。在这项工作中,我们使用独立的多智能体q -学习算法来研究囚徒困境空间版本中稀释和流动性的影响。在这个框架内,定义了算法的不同可能动作,将我们的结果与经典的非强化学习空间囚徒困境的结果联系起来。这突出了该算法在模拟各种博弈论场景方面的多功能性,并展示了其作为基准测试工具的潜力。我们的研究结果揭示了一系列影响,包括具有固定更新规则的游戏在质量上等同于那些具有学习规则的游戏。此外,我们观察到当多种行为被定义时,种群之间出现了共生互惠效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dilution, diffusion and symbiosis in spatial prisoner’s dilemma with reinforcement learning
Recent studies on spatial prisoner’s dilemma games with reinforcement learning have shown that static agents can learn to cooperate through a variety of mechanisms, including noise injection, different learning algorithms, and access to neighbours’ payoff information. In this work, we use an independent multi-agent Q-learning algorithm to investigate the effects of dilution and mobility in the spatial version of the prisoner’s dilemma. Within this framework, different possible actions for the algorithm are defined, linking our results to those of the classical, non-reinforcement learning spatial prisoner’s dilemma. This highlights the algorithm’s versatility in modelling diverse game-theoretical scenarios and demonstrates its potential as a benchmarking tool. Our findings reveal a range of effects, including evidence that games with fixed update rules can be qualitatively equivalent to those with learned ones. Additionally, we observe the emergence of a symbiotic mutualistic effect between populations when multiple actions are defined.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信