术中二维/三维图像配准的可微分x线渲染。

Vivek Gopalakrishnan, Neel Dey, Polina Golland
{"title":"术中二维/三维图像配准的可微分x线渲染。","authors":"Vivek Gopalakrishnan, Neel Dey, Polina Golland","doi":"10.1109/cvpr52733.2024.01108","DOIUrl":null,"url":null,"abstract":"<p><p>Surgical decisions are informed by aligning rapid portable 2D intraoperative images (e.g. X-rays) to a high-fidelity 3D preoperative reference scan (e.g. CT). However, 2D/3D registration can often fail in practice: conventional optimization methods are prohibitively slow and susceptible to local minima, while neural networks trained on small datasets fail on new patients or require impractical landmark supervision. We present DiffPose, a self-supervised approach that leverages patient-specific simulation and differentiable physics-based rendering to achieve accurate 2D/3D registration without relying on manually labeled data. Preoperatively, a CNN is trained to regress the pose of a randomly oriented synthetic X-ray rendered from the preoperative CT. The CNN then initializes rapid intraoperative test-time optimization that uses the differentiable X-ray renderer to refine the solution. Our work further proposes several geometrically principled methods for sampling camera poses from <math><mrow><mi>SE</mi> <mo>(</mo> <mn>3</mn> <mo>)</mo></mrow> </math> , for sparse differentiable rendering, and for driving registration in the tangent space <math> <mrow><mstyle><mi>se</mi></mstyle> <mo>(</mo> <mn>3</mn> <mo>)</mo></mrow> </math> with geodesic and multiscale locality-sensitive losses. DiffPose achieves sub-millimeter accuracy across surgical datasets at intraoperative speeds, improving upon existing unsupervised methods by an order of magnitude and even outperforming supervised baselines. Our implementation is at https://github.com/eigenvivek/DiffPose.</p>","PeriodicalId":74560,"journal":{"name":"Proceedings. IEEE Computer Society Conference on Computer Vision and Pattern Recognition","volume":"2024 ","pages":"11662-11672"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12505627/pdf/","citationCount":"0","resultStr":"{\"title\":\"Intraoperative 2D/3D Image Registration via Differentiable X-ray Rendering.\",\"authors\":\"Vivek Gopalakrishnan, Neel Dey, Polina Golland\",\"doi\":\"10.1109/cvpr52733.2024.01108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Surgical decisions are informed by aligning rapid portable 2D intraoperative images (e.g. X-rays) to a high-fidelity 3D preoperative reference scan (e.g. CT). However, 2D/3D registration can often fail in practice: conventional optimization methods are prohibitively slow and susceptible to local minima, while neural networks trained on small datasets fail on new patients or require impractical landmark supervision. We present DiffPose, a self-supervised approach that leverages patient-specific simulation and differentiable physics-based rendering to achieve accurate 2D/3D registration without relying on manually labeled data. Preoperatively, a CNN is trained to regress the pose of a randomly oriented synthetic X-ray rendered from the preoperative CT. The CNN then initializes rapid intraoperative test-time optimization that uses the differentiable X-ray renderer to refine the solution. Our work further proposes several geometrically principled methods for sampling camera poses from <math><mrow><mi>SE</mi> <mo>(</mo> <mn>3</mn> <mo>)</mo></mrow> </math> , for sparse differentiable rendering, and for driving registration in the tangent space <math> <mrow><mstyle><mi>se</mi></mstyle> <mo>(</mo> <mn>3</mn> <mo>)</mo></mrow> </math> with geodesic and multiscale locality-sensitive losses. DiffPose achieves sub-millimeter accuracy across surgical datasets at intraoperative speeds, improving upon existing unsupervised methods by an order of magnitude and even outperforming supervised baselines. Our implementation is at https://github.com/eigenvivek/DiffPose.</p>\",\"PeriodicalId\":74560,\"journal\":{\"name\":\"Proceedings. IEEE Computer Society Conference on Computer Vision and Pattern Recognition\",\"volume\":\"2024 \",\"pages\":\"11662-11672\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12505627/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. IEEE Computer Society Conference on Computer Vision and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/cvpr52733.2024.01108\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE Computer Society Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/cvpr52733.2024.01108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/16 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

手术决定是通过将快速便携式2D术中图像(如x射线)与高保真3D术前参考扫描(如CT)对齐来获得的。然而,2D/3D配准在实践中经常会失败:传统的优化方法速度太慢,容易受到局部极小值的影响,而在小数据集上训练的神经网络在新患者上失败,或者需要不切实际的地标监督。我们提出了DiffPose,这是一种自我监督的方法,利用特定患者的模拟和基于可微分物理的渲染来实现精确的2D/3D注册,而不依赖于手动标记的数据。术前,训练CNN来回归术前CT呈现的随机定向合成x射线的姿态。然后,CNN初始化快速术中测试时间优化,使用可微x射线渲染器来优化解决方案。我们的工作进一步提出了几种几何原则的方法,用于从SE(3)中采样相机姿势,用于稀疏可微渲染,以及在具有测地线和多尺度位置敏感损失的切线空间SE(3)中进行驾驶配准。在术中速度下,DiffPose在手术数据集上实现了亚毫米级的精度,在现有的无监督方法的基础上提高了一个数量级,甚至优于有监督的基线。我们的实现在https://github.com/eigenvivek/DiffPose。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Intraoperative 2D/3D Image Registration via Differentiable X-ray Rendering.

Surgical decisions are informed by aligning rapid portable 2D intraoperative images (e.g. X-rays) to a high-fidelity 3D preoperative reference scan (e.g. CT). However, 2D/3D registration can often fail in practice: conventional optimization methods are prohibitively slow and susceptible to local minima, while neural networks trained on small datasets fail on new patients or require impractical landmark supervision. We present DiffPose, a self-supervised approach that leverages patient-specific simulation and differentiable physics-based rendering to achieve accurate 2D/3D registration without relying on manually labeled data. Preoperatively, a CNN is trained to regress the pose of a randomly oriented synthetic X-ray rendered from the preoperative CT. The CNN then initializes rapid intraoperative test-time optimization that uses the differentiable X-ray renderer to refine the solution. Our work further proposes several geometrically principled methods for sampling camera poses from SE ( 3 ) , for sparse differentiable rendering, and for driving registration in the tangent space se ( 3 ) with geodesic and multiscale locality-sensitive losses. DiffPose achieves sub-millimeter accuracy across surgical datasets at intraoperative speeds, improving upon existing unsupervised methods by an order of magnitude and even outperforming supervised baselines. Our implementation is at https://github.com/eigenvivek/DiffPose.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
43.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信