Jonghun Kim , Inye Na , Jiwon Chung , Ha-Na Song , Kyungseo Kim , Seongvin Ju , Mi-Yeon Eun , Woo-Keun Seo , Hyunjin Park
{"title":"增强颅内血管分割使用扩散模型无需手动注释的三维飞行时间磁共振血管成像。","authors":"Jonghun Kim , Inye Na , Jiwon Chung , Ha-Na Song , Kyungseo Kim , Seongvin Ju , Mi-Yeon Eun , Woo-Keun Seo , Hyunjin Park","doi":"10.1016/j.compmedimag.2025.102651","DOIUrl":null,"url":null,"abstract":"<div><div>Intracranial vessel segmentation is essential for managing brain disorders, facilitating early detection and precise intervention of stroke and aneurysm. Time-of-Flight Magnetic Resonance Angiography (TOF-MRA) is a commonly used vascular imaging technique for segmenting brain vessels. Traditional rule-based MRA segmentation methods were efficient, but suffered from instability and poor performance. Deep learning models, including diffusion models, have recently gained attention in medical image segmentation. However, they require ground truth for training, which is labor-intensive and time-consuming to obtain. We propose a novel segmentation method that combines the strengths of rule-based and diffusion models to improve segmentation without relying on explicit labels. Our model adopts a Frangi filter to help with vessel detection and modifies the diffusion models to exclude memory-intensive attention modules to improve efficiency. Our condition network concatenates the feature maps to further enhance the segmentation process. Quantitative and qualitative evaluations on two datasets demonstrate that our approach not only maintains the integrity of the vascular regions but also substantially reduces noise, offering a robust solution for segmenting intracranial vessels. Our results suggest a basis for improved patient care in disorders involving brain vessels. Our code is available at <span><span>github.com/jongdory/Vessel-Diffusion</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":50631,"journal":{"name":"Computerized Medical Imaging and Graphics","volume":"125 ","pages":"Article 102651"},"PeriodicalIF":4.9000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing intracranial vessel segmentation using diffusion models without manual annotation for 3D Time-of-Flight Magnetic Resonance Angiography\",\"authors\":\"Jonghun Kim , Inye Na , Jiwon Chung , Ha-Na Song , Kyungseo Kim , Seongvin Ju , Mi-Yeon Eun , Woo-Keun Seo , Hyunjin Park\",\"doi\":\"10.1016/j.compmedimag.2025.102651\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Intracranial vessel segmentation is essential for managing brain disorders, facilitating early detection and precise intervention of stroke and aneurysm. Time-of-Flight Magnetic Resonance Angiography (TOF-MRA) is a commonly used vascular imaging technique for segmenting brain vessels. Traditional rule-based MRA segmentation methods were efficient, but suffered from instability and poor performance. Deep learning models, including diffusion models, have recently gained attention in medical image segmentation. However, they require ground truth for training, which is labor-intensive and time-consuming to obtain. We propose a novel segmentation method that combines the strengths of rule-based and diffusion models to improve segmentation without relying on explicit labels. Our model adopts a Frangi filter to help with vessel detection and modifies the diffusion models to exclude memory-intensive attention modules to improve efficiency. Our condition network concatenates the feature maps to further enhance the segmentation process. Quantitative and qualitative evaluations on two datasets demonstrate that our approach not only maintains the integrity of the vascular regions but also substantially reduces noise, offering a robust solution for segmenting intracranial vessels. Our results suggest a basis for improved patient care in disorders involving brain vessels. Our code is available at <span><span>github.com/jongdory/Vessel-Diffusion</span><svg><path></path></svg></span>.</div></div>\",\"PeriodicalId\":50631,\"journal\":{\"name\":\"Computerized Medical Imaging and Graphics\",\"volume\":\"125 \",\"pages\":\"Article 102651\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computerized Medical Imaging and Graphics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0895611125001600\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computerized Medical Imaging and Graphics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0895611125001600","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Enhancing intracranial vessel segmentation using diffusion models without manual annotation for 3D Time-of-Flight Magnetic Resonance Angiography
Intracranial vessel segmentation is essential for managing brain disorders, facilitating early detection and precise intervention of stroke and aneurysm. Time-of-Flight Magnetic Resonance Angiography (TOF-MRA) is a commonly used vascular imaging technique for segmenting brain vessels. Traditional rule-based MRA segmentation methods were efficient, but suffered from instability and poor performance. Deep learning models, including diffusion models, have recently gained attention in medical image segmentation. However, they require ground truth for training, which is labor-intensive and time-consuming to obtain. We propose a novel segmentation method that combines the strengths of rule-based and diffusion models to improve segmentation without relying on explicit labels. Our model adopts a Frangi filter to help with vessel detection and modifies the diffusion models to exclude memory-intensive attention modules to improve efficiency. Our condition network concatenates the feature maps to further enhance the segmentation process. Quantitative and qualitative evaluations on two datasets demonstrate that our approach not only maintains the integrity of the vascular regions but also substantially reduces noise, offering a robust solution for segmenting intracranial vessels. Our results suggest a basis for improved patient care in disorders involving brain vessels. Our code is available at github.com/jongdory/Vessel-Diffusion.
期刊介绍:
The purpose of the journal Computerized Medical Imaging and Graphics is to act as a source for the exchange of research results concerning algorithmic advances, development, and application of digital imaging in disease detection, diagnosis, intervention, prevention, precision medicine, and population health. Included in the journal will be articles on novel computerized imaging or visualization techniques, including artificial intelligence and machine learning, augmented reality for surgical planning and guidance, big biomedical data visualization, computer-aided diagnosis, computerized-robotic surgery, image-guided therapy, imaging scanning and reconstruction, mobile and tele-imaging, radiomics, and imaging integration and modeling with other information relevant to digital health. The types of biomedical imaging include: magnetic resonance, computed tomography, ultrasound, nuclear medicine, X-ray, microwave, optical and multi-photon microscopy, video and sensory imaging, and the convergence of biomedical images with other non-imaging datasets.