Marta Pérez-Illana, Anna Schachner, Mercedes Hernando-Pérez, Gabriela N Condezo, Alberto Paradela, Marta Martínez, Roberto Marabini, Michael Hess, Carmen San Martín
{"title":"鸟腺病毒结构:在缺乏稳定蛋白的情况下具有高度热稳定性的衣壳。","authors":"Marta Pérez-Illana, Anna Schachner, Mercedes Hernando-Pérez, Gabriela N Condezo, Alberto Paradela, Marta Martínez, Roberto Marabini, Michael Hess, Carmen San Martín","doi":"10.1371/journal.ppat.1013553","DOIUrl":null,"url":null,"abstract":"<p><p>High-resolution structural studies have mainly focused on two out of the six adenovirus genera: mastadenoviruses and atadenoviruses. Here we report the high-resolution structure of an aviadenovirus, the poultry pathogen fowl adenovirus serotype 4 (FAdV-C4). FAdV-C4 virions are highly thermostable, despite lacking minor coat and core proteins shown to stabilize the mast- and atadenovirus particles, having no genus-specific cementing proteins, and packaging a 25% longer genome. Unique structural features of the FAdV-C4 hexon include a large insertion at the trimer equatorial region, and a long N-terminal tail. Protein IIIa conformation is closer to atadenoviruses than to mastadenoviruses, while protein VIII diverges from all previously reported structures. We interpret these differences in light of adenovirus evolution. Finally, we discuss the possible role of core composition in determining capsid stability properties. These results enlarge our view on the structural diversity of adenoviruses, and provide useful information to counteract fowl pathogens or use non-human adenoviruses as vectors.</p>","PeriodicalId":48999,"journal":{"name":"PLoS Pathogens","volume":"21 10","pages":"e1013553"},"PeriodicalIF":4.9000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12517501/pdf/","citationCount":"0","resultStr":"{\"title\":\"Aviadenovirus structure: A highly thermostable capsid in the absence of stabilizing proteins.\",\"authors\":\"Marta Pérez-Illana, Anna Schachner, Mercedes Hernando-Pérez, Gabriela N Condezo, Alberto Paradela, Marta Martínez, Roberto Marabini, Michael Hess, Carmen San Martín\",\"doi\":\"10.1371/journal.ppat.1013553\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>High-resolution structural studies have mainly focused on two out of the six adenovirus genera: mastadenoviruses and atadenoviruses. Here we report the high-resolution structure of an aviadenovirus, the poultry pathogen fowl adenovirus serotype 4 (FAdV-C4). FAdV-C4 virions are highly thermostable, despite lacking minor coat and core proteins shown to stabilize the mast- and atadenovirus particles, having no genus-specific cementing proteins, and packaging a 25% longer genome. Unique structural features of the FAdV-C4 hexon include a large insertion at the trimer equatorial region, and a long N-terminal tail. Protein IIIa conformation is closer to atadenoviruses than to mastadenoviruses, while protein VIII diverges from all previously reported structures. We interpret these differences in light of adenovirus evolution. Finally, we discuss the possible role of core composition in determining capsid stability properties. These results enlarge our view on the structural diversity of adenoviruses, and provide useful information to counteract fowl pathogens or use non-human adenoviruses as vectors.</p>\",\"PeriodicalId\":48999,\"journal\":{\"name\":\"PLoS Pathogens\",\"volume\":\"21 10\",\"pages\":\"e1013553\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12517501/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS Pathogens\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.ppat.1013553\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/10/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Pathogens","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1371/journal.ppat.1013553","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/10/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Aviadenovirus structure: A highly thermostable capsid in the absence of stabilizing proteins.
High-resolution structural studies have mainly focused on two out of the six adenovirus genera: mastadenoviruses and atadenoviruses. Here we report the high-resolution structure of an aviadenovirus, the poultry pathogen fowl adenovirus serotype 4 (FAdV-C4). FAdV-C4 virions are highly thermostable, despite lacking minor coat and core proteins shown to stabilize the mast- and atadenovirus particles, having no genus-specific cementing proteins, and packaging a 25% longer genome. Unique structural features of the FAdV-C4 hexon include a large insertion at the trimer equatorial region, and a long N-terminal tail. Protein IIIa conformation is closer to atadenoviruses than to mastadenoviruses, while protein VIII diverges from all previously reported structures. We interpret these differences in light of adenovirus evolution. Finally, we discuss the possible role of core composition in determining capsid stability properties. These results enlarge our view on the structural diversity of adenoviruses, and provide useful information to counteract fowl pathogens or use non-human adenoviruses as vectors.
期刊介绍:
Bacteria, fungi, parasites, prions and viruses cause a plethora of diseases that have important medical, agricultural, and economic consequences. Moreover, the study of microbes continues to provide novel insights into such fundamental processes as the molecular basis of cellular and organismal function.