Linyi Li , Yu Wang , Zhiyong Du , Huahui Yu , Yunyun Yang , Zihan Zhang , Yanru Duan , Lijie Han , Chaowei Hu , Yunhui Du , Haili Sun , Xuechun Sun , Jingci Xing , Xiaoqian Gao , Dong Chen , Yuhui Wang , Xinwei Hua , Jianping Li , Yanwen Qin
{"title":"肝乌头酶1重定向柠檬酸通量抑制脂肪生成和改善高胆固醇血症。","authors":"Linyi Li , Yu Wang , Zhiyong Du , Huahui Yu , Yunyun Yang , Zihan Zhang , Yanru Duan , Lijie Han , Chaowei Hu , Yunhui Du , Haili Sun , Xuechun Sun , Jingci Xing , Xiaoqian Gao , Dong Chen , Yuhui Wang , Xinwei Hua , Jianping Li , Yanwen Qin","doi":"10.1016/j.metabol.2025.156417","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and aims</h3><div>Targeting key enzymes in hepatic de novo lipogenesis (DNL) presents a promising strategy for treating hypercholesterolemia. However, the precise regulatory mechanisms governing hepatic DNL remain incompletely understood. Cytosolic citrate plays a crucial role in DNL, with aconitase 1 (ACO1), a key enzyme in citrate metabolism, potentially influencing lipid metabolism. The aim of this study was to clarify the role of hepatic ACO1 in regulating both hepatic and systemic lipid homeostasis.</div></div><div><h3>Methods</h3><div>ACO1 expression and activity were assessed in liver tissues from multiple hypercholesterolemic animal models. Using liver-specific genetic manipulation, we examined the effects of hepatic ACO1 knockout and overexpression on hypercholesterolemia and atherosclerosis. Targeted metabolomics and stable isotope-based flux analysis were used to profile hepatic substrate utilization patterns.</div></div><div><h3>Results</h3><div>Hepatic ACO1 expression was significantly reduced in both hypercholesterolemic patients and animal models. Hepatocyte-specific ACO1 deletion exacerbated dyslipidemia, while ACO1 overexpression improved hypercholesterolemia, hepatic steatosis, and atherosclerosis in mouse models. Mechanistically, ACO1 overexpression redirected cytosolic citrate metabolism toward α-ketoglutarate, thereby limiting acetyl-CoA availability for DNL and suppressing fatty acid and cholesterol synthesis. These lipid-lowering effects were dependent on ACO1 enzymatic activity, as catalytically inactive ACO1 mutants failed to replicate the observed benefits.</div></div><div><h3>Conclusion</h3><div>Our findings identify hepatic ACO1 as a critical regulator of lipid metabolism homeostasis. Promoting ACO1-mediated citrate redirection effectively mitigates hypercholesterolemia and atherosclerosis by suppressing hepatic DNL, highlighting ACO1 as a potential target for lipid-lowering therapies.</div></div>","PeriodicalId":18694,"journal":{"name":"Metabolism: clinical and experimental","volume":"174 ","pages":"Article 156417"},"PeriodicalIF":11.9000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hepatic aconitase 1 redirects citrate flux to suppress lipogenesis and ameliorate hypercholesterolemia\",\"authors\":\"Linyi Li , Yu Wang , Zhiyong Du , Huahui Yu , Yunyun Yang , Zihan Zhang , Yanru Duan , Lijie Han , Chaowei Hu , Yunhui Du , Haili Sun , Xuechun Sun , Jingci Xing , Xiaoqian Gao , Dong Chen , Yuhui Wang , Xinwei Hua , Jianping Li , Yanwen Qin\",\"doi\":\"10.1016/j.metabol.2025.156417\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background and aims</h3><div>Targeting key enzymes in hepatic de novo lipogenesis (DNL) presents a promising strategy for treating hypercholesterolemia. However, the precise regulatory mechanisms governing hepatic DNL remain incompletely understood. Cytosolic citrate plays a crucial role in DNL, with aconitase 1 (ACO1), a key enzyme in citrate metabolism, potentially influencing lipid metabolism. The aim of this study was to clarify the role of hepatic ACO1 in regulating both hepatic and systemic lipid homeostasis.</div></div><div><h3>Methods</h3><div>ACO1 expression and activity were assessed in liver tissues from multiple hypercholesterolemic animal models. Using liver-specific genetic manipulation, we examined the effects of hepatic ACO1 knockout and overexpression on hypercholesterolemia and atherosclerosis. Targeted metabolomics and stable isotope-based flux analysis were used to profile hepatic substrate utilization patterns.</div></div><div><h3>Results</h3><div>Hepatic ACO1 expression was significantly reduced in both hypercholesterolemic patients and animal models. Hepatocyte-specific ACO1 deletion exacerbated dyslipidemia, while ACO1 overexpression improved hypercholesterolemia, hepatic steatosis, and atherosclerosis in mouse models. Mechanistically, ACO1 overexpression redirected cytosolic citrate metabolism toward α-ketoglutarate, thereby limiting acetyl-CoA availability for DNL and suppressing fatty acid and cholesterol synthesis. These lipid-lowering effects were dependent on ACO1 enzymatic activity, as catalytically inactive ACO1 mutants failed to replicate the observed benefits.</div></div><div><h3>Conclusion</h3><div>Our findings identify hepatic ACO1 as a critical regulator of lipid metabolism homeostasis. Promoting ACO1-mediated citrate redirection effectively mitigates hypercholesterolemia and atherosclerosis by suppressing hepatic DNL, highlighting ACO1 as a potential target for lipid-lowering therapies.</div></div>\",\"PeriodicalId\":18694,\"journal\":{\"name\":\"Metabolism: clinical and experimental\",\"volume\":\"174 \",\"pages\":\"Article 156417\"},\"PeriodicalIF\":11.9000,\"publicationDate\":\"2025-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metabolism: clinical and experimental\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0026049525002860\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolism: clinical and experimental","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0026049525002860","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Hepatic aconitase 1 redirects citrate flux to suppress lipogenesis and ameliorate hypercholesterolemia
Background and aims
Targeting key enzymes in hepatic de novo lipogenesis (DNL) presents a promising strategy for treating hypercholesterolemia. However, the precise regulatory mechanisms governing hepatic DNL remain incompletely understood. Cytosolic citrate plays a crucial role in DNL, with aconitase 1 (ACO1), a key enzyme in citrate metabolism, potentially influencing lipid metabolism. The aim of this study was to clarify the role of hepatic ACO1 in regulating both hepatic and systemic lipid homeostasis.
Methods
ACO1 expression and activity were assessed in liver tissues from multiple hypercholesterolemic animal models. Using liver-specific genetic manipulation, we examined the effects of hepatic ACO1 knockout and overexpression on hypercholesterolemia and atherosclerosis. Targeted metabolomics and stable isotope-based flux analysis were used to profile hepatic substrate utilization patterns.
Results
Hepatic ACO1 expression was significantly reduced in both hypercholesterolemic patients and animal models. Hepatocyte-specific ACO1 deletion exacerbated dyslipidemia, while ACO1 overexpression improved hypercholesterolemia, hepatic steatosis, and atherosclerosis in mouse models. Mechanistically, ACO1 overexpression redirected cytosolic citrate metabolism toward α-ketoglutarate, thereby limiting acetyl-CoA availability for DNL and suppressing fatty acid and cholesterol synthesis. These lipid-lowering effects were dependent on ACO1 enzymatic activity, as catalytically inactive ACO1 mutants failed to replicate the observed benefits.
Conclusion
Our findings identify hepatic ACO1 as a critical regulator of lipid metabolism homeostasis. Promoting ACO1-mediated citrate redirection effectively mitigates hypercholesterolemia and atherosclerosis by suppressing hepatic DNL, highlighting ACO1 as a potential target for lipid-lowering therapies.
期刊介绍:
Metabolism upholds research excellence by disseminating high-quality original research, reviews, editorials, and commentaries covering all facets of human metabolism.
Consideration for publication in Metabolism extends to studies in humans, animal, and cellular models, with a particular emphasis on work demonstrating strong translational potential.
The journal addresses a range of topics, including:
- Energy Expenditure and Obesity
- Metabolic Syndrome, Prediabetes, and Diabetes
- Nutrition, Exercise, and the Environment
- Genetics and Genomics, Proteomics, and Metabolomics
- Carbohydrate, Lipid, and Protein Metabolism
- Endocrinology and Hypertension
- Mineral and Bone Metabolism
- Cardiovascular Diseases and Malignancies
- Inflammation in metabolism and immunometabolism