新型线粒体靶向雌激素的抗氧化、生物能量和代谢作用。

IF 3.8 4区 医学 Q2 ENDOCRINOLOGY & METABOLISM
Geovanni Alberto Ruiz-Romero, Johanna Bernáldez-Sarabia, Magdiel Orozco-Valdivia, Jessica Yazbel Romero-Rico, Pablo Garrido, Gonzalo Isaí Flores-Acosta, Alfredo Martínez, Carolina Álvarez-Delgado
{"title":"新型线粒体靶向雌激素的抗氧化、生物能量和代谢作用。","authors":"Geovanni Alberto Ruiz-Romero, Johanna Bernáldez-Sarabia, Magdiel Orozco-Valdivia, Jessica Yazbel Romero-Rico, Pablo Garrido, Gonzalo Isaí Flores-Acosta, Alfredo Martínez, Carolina Álvarez-Delgado","doi":"10.1530/JME-25-0081","DOIUrl":null,"url":null,"abstract":"<p><p>Estrogens are steroid hormones that regulate antioxidant and mitochondrial bioenergetic metabolism in addition to activating nuclear genomic pathways. Concentrating these effects within the mitochondria is a novel strategy for ameliorating mitochondrial dysfunction, which is characteristic of cancer, metabolic, and neurodegenerative diseases. The use of synthetic mitochondria-targeted estrogens containing a triphenylphosphonium group may provide a basis for improving mitochondrial function in these conditions. Here, we evaluate the effects of two compounds, one derived from 17β-estradiol (mitoE2) and the other from 17α-ethinylestradiol (mitoEE2) on cell viability in MCF-7 and CCD-1112Sk cells. We further examine their influence on the activities of superoxide dismutase (MnSOD), citrate synthase (CS), cytochrome c oxidase (COX), and ATP synthase, as well as in the glycolytic reserve and cellular respiration. In both cellular models, cell viability assays indicated that MitoE2 was well tolerated below 500 nM, while MitoEE2 allowed treatments up to 100 nM for up to 24 hours. We found that the molecules act differently on enzymatic targets. Exposure of MCF-7 cells to mitoE2 resulted in reduced MnSOD activity. Pretreatment with MitoE2 or MitoEE2 restored the viability of MCF-7 cells exposed to H2O2-induced oxidative damage to levels comparable to untreated controls. Additionally, MitoEE2 increased the activities of CS and COX. Both mitochondria-targeted estrogens increased glycolytic reserve and mitochondrial respiration, as determined by extracellular flux assays. Overall, these findings suggest that the antioxidant and bioenergetic effects observed encourage further investigation into their potential as therapeutic strategies for conditions linked to mitochondrial dysfunction.</p>","PeriodicalId":16570,"journal":{"name":"Journal of molecular endocrinology","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Antioxidant, Bioenergetic, and Metabolic Effects of Novel Mitochondria-Targeted Estrogens.\",\"authors\":\"Geovanni Alberto Ruiz-Romero, Johanna Bernáldez-Sarabia, Magdiel Orozco-Valdivia, Jessica Yazbel Romero-Rico, Pablo Garrido, Gonzalo Isaí Flores-Acosta, Alfredo Martínez, Carolina Álvarez-Delgado\",\"doi\":\"10.1530/JME-25-0081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Estrogens are steroid hormones that regulate antioxidant and mitochondrial bioenergetic metabolism in addition to activating nuclear genomic pathways. Concentrating these effects within the mitochondria is a novel strategy for ameliorating mitochondrial dysfunction, which is characteristic of cancer, metabolic, and neurodegenerative diseases. The use of synthetic mitochondria-targeted estrogens containing a triphenylphosphonium group may provide a basis for improving mitochondrial function in these conditions. Here, we evaluate the effects of two compounds, one derived from 17β-estradiol (mitoE2) and the other from 17α-ethinylestradiol (mitoEE2) on cell viability in MCF-7 and CCD-1112Sk cells. We further examine their influence on the activities of superoxide dismutase (MnSOD), citrate synthase (CS), cytochrome c oxidase (COX), and ATP synthase, as well as in the glycolytic reserve and cellular respiration. In both cellular models, cell viability assays indicated that MitoE2 was well tolerated below 500 nM, while MitoEE2 allowed treatments up to 100 nM for up to 24 hours. We found that the molecules act differently on enzymatic targets. Exposure of MCF-7 cells to mitoE2 resulted in reduced MnSOD activity. Pretreatment with MitoE2 or MitoEE2 restored the viability of MCF-7 cells exposed to H2O2-induced oxidative damage to levels comparable to untreated controls. Additionally, MitoEE2 increased the activities of CS and COX. Both mitochondria-targeted estrogens increased glycolytic reserve and mitochondrial respiration, as determined by extracellular flux assays. Overall, these findings suggest that the antioxidant and bioenergetic effects observed encourage further investigation into their potential as therapeutic strategies for conditions linked to mitochondrial dysfunction.</p>\",\"PeriodicalId\":16570,\"journal\":{\"name\":\"Journal of molecular endocrinology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of molecular endocrinology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1530/JME-25-0081\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of molecular endocrinology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1530/JME-25-0081","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

摘要

雌激素是类固醇激素,除了激活核基因组途径外,还调节抗氧化和线粒体生物能量代谢。将这些作用集中在线粒体内是一种改善线粒体功能障碍的新策略,线粒体功能障碍是癌症、代谢和神经退行性疾病的特征。使用含有三苯基膦基团的合成线粒体靶向雌激素可能为改善这些条件下的线粒体功能提供基础。在这里,我们评估了两种化合物,一种来自17β-雌二醇(mitoE2),另一种来自17α-炔雌二醇(mitoEE2)对MCF-7和cd - 1112sk细胞活力的影响。我们进一步研究了它们对超氧化物歧化酶(MnSOD)、柠檬酸合成酶(CS)、细胞色素c氧化酶(COX)和ATP合成酶活性以及糖酵解储备和细胞呼吸的影响。在这两种细胞模型中,细胞活力测定表明,MitoE2在500 nM以下具有良好的耐受性,而MitoEE2允许在100 nM下处理长达24小时。我们发现这些分子对酶的作用是不同的。MCF-7细胞暴露于mitoE2导致MnSOD活性降低。使用MitoE2或MitoEE2预处理后,暴露于h2o2诱导的氧化损伤的MCF-7细胞的活力恢复到与未处理对照组相当的水平。此外,MitoEE2增加了CS和COX的活性。通过细胞外通量测定,两种线粒体靶向雌激素均可增加糖酵解储备和线粒体呼吸。总的来说,这些发现表明,观察到的抗氧化和生物能量效应鼓励进一步研究它们作为线粒体功能障碍相关疾病的治疗策略的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Antioxidant, Bioenergetic, and Metabolic Effects of Novel Mitochondria-Targeted Estrogens.

Estrogens are steroid hormones that regulate antioxidant and mitochondrial bioenergetic metabolism in addition to activating nuclear genomic pathways. Concentrating these effects within the mitochondria is a novel strategy for ameliorating mitochondrial dysfunction, which is characteristic of cancer, metabolic, and neurodegenerative diseases. The use of synthetic mitochondria-targeted estrogens containing a triphenylphosphonium group may provide a basis for improving mitochondrial function in these conditions. Here, we evaluate the effects of two compounds, one derived from 17β-estradiol (mitoE2) and the other from 17α-ethinylestradiol (mitoEE2) on cell viability in MCF-7 and CCD-1112Sk cells. We further examine their influence on the activities of superoxide dismutase (MnSOD), citrate synthase (CS), cytochrome c oxidase (COX), and ATP synthase, as well as in the glycolytic reserve and cellular respiration. In both cellular models, cell viability assays indicated that MitoE2 was well tolerated below 500 nM, while MitoEE2 allowed treatments up to 100 nM for up to 24 hours. We found that the molecules act differently on enzymatic targets. Exposure of MCF-7 cells to mitoE2 resulted in reduced MnSOD activity. Pretreatment with MitoE2 or MitoEE2 restored the viability of MCF-7 cells exposed to H2O2-induced oxidative damage to levels comparable to untreated controls. Additionally, MitoEE2 increased the activities of CS and COX. Both mitochondria-targeted estrogens increased glycolytic reserve and mitochondrial respiration, as determined by extracellular flux assays. Overall, these findings suggest that the antioxidant and bioenergetic effects observed encourage further investigation into their potential as therapeutic strategies for conditions linked to mitochondrial dysfunction.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of molecular endocrinology
Journal of molecular endocrinology 医学-内分泌学与代谢
CiteScore
6.90
自引率
0.00%
发文量
96
审稿时长
1 months
期刊介绍: The Journal of Molecular Endocrinology is an official journal of the Society for Endocrinology and is endorsed by the European Society of Endocrinology and the Endocrine Society of Australia. Journal of Molecular Endocrinology is a leading global journal that publishes original research articles and reviews. The journal focuses on molecular and cellular mechanisms in endocrinology, including: gene regulation, cell biology, signalling, mutations, transgenics, hormone-dependant cancers, nuclear receptors, and omics. Basic and pathophysiological studies at the molecule and cell level are considered, as well as human sample studies where this is the experimental model of choice. Technique studies including CRISPR or gene editing are also encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信