磁场和纳米颗粒对恶性食道细胞钙信号传导影响的数学模型。

IF 1.6 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Yevhen Salatskyi, Svitlana Vasylivna Gorobets, Oksana Yuriivna Gorobets
{"title":"磁场和纳米颗粒对恶性食道细胞钙信号传导影响的数学模型。","authors":"Yevhen Salatskyi, Svitlana Vasylivna Gorobets, Oksana Yuriivna Gorobets","doi":"10.1088/2057-1976/ae1140","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>This study aimed to develop a mathematical model investigating how low-frequency magnetic fields and magnetic nanoparticles theoretically affect calcium signalling in esophageal squamous cell carcinoma (ESCC) cells through mechanosensitive channel activation.</p><p><strong>Methods: </strong>We modified the Chang model to incorporate magnetic field-induced membrane shear stress mechanisms, simulating intracellular calcium dynamics using ordinary differential equations in Python. The model examined rotating magnetic fields at 25 mT across frequencies from 0 to 1.7π mHz, analyzing calcium oscillation patterns and their potential effects on mitogen-activated protein kinase (MAPK) signalling pathways.</p><p><strong>Results: </strong>Simulations demonstrated that low-frequency rotating magnetic fields at 1.7π mHz and lower frequencies disrupted normal calcium oscillations, creating inter-burst periods of at least 588.2 seconds. This minimum period exceeds the sensitivity threshold of MAPK signalling (1.7-17 mHz), suggesting potential inhibition of proliferation pathways dependent on calcium oscillation frequency. The model predicted reduced oscillation magnitude and altered temporal dynamics compared to control conditions.</p><p><strong>Conclusions: </strong>The mathematical framework provides theoretical foundation for magnetic field interactions with cellular calcium dynamics through mechanosensitive channels, offering conceptual basis for potential therapeutic applications. All findings require comprehensive experimental validation before any clinical implications can be considered.</p>","PeriodicalId":8896,"journal":{"name":"Biomedical Physics & Engineering Express","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mathematical Modelling of Magnetic Field and Nanoparticle Effects on Calcium Signalling in Malignant Esophageal Cells.\",\"authors\":\"Yevhen Salatskyi, Svitlana Vasylivna Gorobets, Oksana Yuriivna Gorobets\",\"doi\":\"10.1088/2057-1976/ae1140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>This study aimed to develop a mathematical model investigating how low-frequency magnetic fields and magnetic nanoparticles theoretically affect calcium signalling in esophageal squamous cell carcinoma (ESCC) cells through mechanosensitive channel activation.</p><p><strong>Methods: </strong>We modified the Chang model to incorporate magnetic field-induced membrane shear stress mechanisms, simulating intracellular calcium dynamics using ordinary differential equations in Python. The model examined rotating magnetic fields at 25 mT across frequencies from 0 to 1.7π mHz, analyzing calcium oscillation patterns and their potential effects on mitogen-activated protein kinase (MAPK) signalling pathways.</p><p><strong>Results: </strong>Simulations demonstrated that low-frequency rotating magnetic fields at 1.7π mHz and lower frequencies disrupted normal calcium oscillations, creating inter-burst periods of at least 588.2 seconds. This minimum period exceeds the sensitivity threshold of MAPK signalling (1.7-17 mHz), suggesting potential inhibition of proliferation pathways dependent on calcium oscillation frequency. The model predicted reduced oscillation magnitude and altered temporal dynamics compared to control conditions.</p><p><strong>Conclusions: </strong>The mathematical framework provides theoretical foundation for magnetic field interactions with cellular calcium dynamics through mechanosensitive channels, offering conceptual basis for potential therapeutic applications. All findings require comprehensive experimental validation before any clinical implications can be considered.</p>\",\"PeriodicalId\":8896,\"journal\":{\"name\":\"Biomedical Physics & Engineering Express\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Physics & Engineering Express\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2057-1976/ae1140\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Physics & Engineering Express","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2057-1976/ae1140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

目的:本研究旨在建立一个数学模型,研究低频磁场和磁性纳米颗粒如何通过机械敏感通道激活理论影响食管鳞状细胞癌(ESCC)细胞中的钙信号传导。方法:我们修改了Chang模型,加入了磁场诱导的膜剪切应力机制,使用Python中的常微分方程模拟细胞内钙动力学。该模型检测了频率从0到1.7π mHz的25 mT旋转磁场,分析了钙振荡模式及其对丝裂原活化蛋白激酶(MAPK)信号通路的潜在影响。结果:模拟表明,在1.7π mHz和更低频率的低频旋转磁场破坏了正常的钙振荡,造成至少588.2秒的爆发间隔。这个最小周期超过了MAPK信号传导的敏感性阈值(1.7-17 mHz),表明依赖于钙振荡频率的增殖途径可能受到抑制。与控制条件相比,该模型预测振荡幅度减小,时间动力学改变。结论:该数学框架为磁场通过机械敏感通道与细胞钙动力学相互作用提供了理论基础,为潜在的治疗应用提供了概念基础。在考虑任何临床意义之前,所有的发现都需要全面的实验验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mathematical Modelling of Magnetic Field and Nanoparticle Effects on Calcium Signalling in Malignant Esophageal Cells.

Purpose: This study aimed to develop a mathematical model investigating how low-frequency magnetic fields and magnetic nanoparticles theoretically affect calcium signalling in esophageal squamous cell carcinoma (ESCC) cells through mechanosensitive channel activation.

Methods: We modified the Chang model to incorporate magnetic field-induced membrane shear stress mechanisms, simulating intracellular calcium dynamics using ordinary differential equations in Python. The model examined rotating magnetic fields at 25 mT across frequencies from 0 to 1.7π mHz, analyzing calcium oscillation patterns and their potential effects on mitogen-activated protein kinase (MAPK) signalling pathways.

Results: Simulations demonstrated that low-frequency rotating magnetic fields at 1.7π mHz and lower frequencies disrupted normal calcium oscillations, creating inter-burst periods of at least 588.2 seconds. This minimum period exceeds the sensitivity threshold of MAPK signalling (1.7-17 mHz), suggesting potential inhibition of proliferation pathways dependent on calcium oscillation frequency. The model predicted reduced oscillation magnitude and altered temporal dynamics compared to control conditions.

Conclusions: The mathematical framework provides theoretical foundation for magnetic field interactions with cellular calcium dynamics through mechanosensitive channels, offering conceptual basis for potential therapeutic applications. All findings require comprehensive experimental validation before any clinical implications can be considered.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomedical Physics & Engineering Express
Biomedical Physics & Engineering Express RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
2.80
自引率
0.00%
发文量
153
期刊介绍: BPEX is an inclusive, international, multidisciplinary journal devoted to publishing new research on any application of physics and/or engineering in medicine and/or biology. Characterized by a broad geographical coverage and a fast-track peer-review process, relevant topics include all aspects of biophysics, medical physics and biomedical engineering. Papers that are almost entirely clinical or biological in their focus are not suitable. The journal has an emphasis on publishing interdisciplinary work and bringing research fields together, encompassing experimental, theoretical and computational work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信