结构域间环调节tem型宽谱β-内酰胺酶耐药活性的构象动力学。

IF 4.5 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Tsz-Fung Wong, Pui-Kin So, Wai-Po Kong, Zhong-Ping Yao
{"title":"结构域间环调节tem型宽谱β-内酰胺酶耐药活性的构象动力学。","authors":"Tsz-Fung Wong, Pui-Kin So, Wai-Po Kong, Zhong-Ping Yao","doi":"10.1016/j.jmb.2025.169481","DOIUrl":null,"url":null,"abstract":"<p><p>Extended-spectrum β-lactamases (ESBLs) are bacteria-produced enzymes that can hydrolyze and confer extra resistance to new generation β-lactam antibiotics. TEM-type ESBLs are clinically prevalent and have caused serious health problems worldwide. TEM-type ESBLs are the evolutionary products of wild-type TEM-1 β-lactamase mainly through individual or combined mutations of G238S, E104K and M182T, but how these mutations cause conformational dynamics changes of the enzymes and how these changes correlate to their extended-spectrum antibiotic resistance remain unclear. Using hydrogen/deuterium exchange mass spectrometry integrated with molecular dynamics simulation, we revealed the significant effects of these individual or combined mutations on the conformational dynamics of the all-α-domain, α/β-domain and interdomain loop of the enzymes. Particularly, we observed different conformational dynamics changes of the interdomain loop in response to different mutations and substrate binding, which indicated the important role of the interdomain loop in modulating conformational dynamics of ESBLs for the catalytic efficiency. These new findings shed new insights into the antibiotic-resistance mechanism of TEM-type ESBLs and designing of novel inhibitors, and provide clues for the evolutionary strategy of β-lactamases and the studies of proteins with similar linking loops.</p>","PeriodicalId":369,"journal":{"name":"Journal of Molecular Biology","volume":" ","pages":"169481"},"PeriodicalIF":4.5000,"publicationDate":"2025-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The interdomain loop modulates conformational dynamics for the antibiotic-resistant activity of TEM-type extended-spectrum β-lactamases.\",\"authors\":\"Tsz-Fung Wong, Pui-Kin So, Wai-Po Kong, Zhong-Ping Yao\",\"doi\":\"10.1016/j.jmb.2025.169481\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Extended-spectrum β-lactamases (ESBLs) are bacteria-produced enzymes that can hydrolyze and confer extra resistance to new generation β-lactam antibiotics. TEM-type ESBLs are clinically prevalent and have caused serious health problems worldwide. TEM-type ESBLs are the evolutionary products of wild-type TEM-1 β-lactamase mainly through individual or combined mutations of G238S, E104K and M182T, but how these mutations cause conformational dynamics changes of the enzymes and how these changes correlate to their extended-spectrum antibiotic resistance remain unclear. Using hydrogen/deuterium exchange mass spectrometry integrated with molecular dynamics simulation, we revealed the significant effects of these individual or combined mutations on the conformational dynamics of the all-α-domain, α/β-domain and interdomain loop of the enzymes. Particularly, we observed different conformational dynamics changes of the interdomain loop in response to different mutations and substrate binding, which indicated the important role of the interdomain loop in modulating conformational dynamics of ESBLs for the catalytic efficiency. These new findings shed new insights into the antibiotic-resistance mechanism of TEM-type ESBLs and designing of novel inhibitors, and provide clues for the evolutionary strategy of β-lactamases and the studies of proteins with similar linking loops.</p>\",\"PeriodicalId\":369,\"journal\":{\"name\":\"Journal of Molecular Biology\",\"volume\":\" \",\"pages\":\"169481\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jmb.2025.169481\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jmb.2025.169481","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

广谱β-内酰胺酶(ESBLs)是细菌产生的酶,可以水解并赋予新一代β-内酰胺类抗生素额外的抗性。tem型esbl在临床上普遍存在,并在世界范围内引起了严重的健康问题。tem型ESBLs是野生型TEM-1 β-内酰胺酶主要通过G238S、E104K和M182T的单独或联合突变进化而来的产物,但这些突变如何引起酶的构象动力学变化以及这些变化与它们的广谱抗生素耐药性之间的关系尚不清楚。利用氢/氘交换质谱结合分子动力学模拟,我们揭示了这些单个或组合突变对酶的全α-结构域、α/β-结构域和结构域间环的构象动力学的显著影响。特别是,我们观察到不同突变和底物结合时结构域间环的不同构象动力学变化,这表明结构域间环在调节ESBLs的构象动力学中对催化效率的重要作用。这些新发现为tem型ESBLs的耐药机制和新型抑制剂的设计提供了新的见解,并为β-内酰胺酶的进化策略和具有类似连接环的蛋白质的研究提供了线索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The interdomain loop modulates conformational dynamics for the antibiotic-resistant activity of TEM-type extended-spectrum β-lactamases.

Extended-spectrum β-lactamases (ESBLs) are bacteria-produced enzymes that can hydrolyze and confer extra resistance to new generation β-lactam antibiotics. TEM-type ESBLs are clinically prevalent and have caused serious health problems worldwide. TEM-type ESBLs are the evolutionary products of wild-type TEM-1 β-lactamase mainly through individual or combined mutations of G238S, E104K and M182T, but how these mutations cause conformational dynamics changes of the enzymes and how these changes correlate to their extended-spectrum antibiotic resistance remain unclear. Using hydrogen/deuterium exchange mass spectrometry integrated with molecular dynamics simulation, we revealed the significant effects of these individual or combined mutations on the conformational dynamics of the all-α-domain, α/β-domain and interdomain loop of the enzymes. Particularly, we observed different conformational dynamics changes of the interdomain loop in response to different mutations and substrate binding, which indicated the important role of the interdomain loop in modulating conformational dynamics of ESBLs for the catalytic efficiency. These new findings shed new insights into the antibiotic-resistance mechanism of TEM-type ESBLs and designing of novel inhibitors, and provide clues for the evolutionary strategy of β-lactamases and the studies of proteins with similar linking loops.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Molecular Biology
Journal of Molecular Biology 生物-生化与分子生物学
CiteScore
11.30
自引率
1.80%
发文量
412
审稿时长
28 days
期刊介绍: Journal of Molecular Biology (JMB) provides high quality, comprehensive and broad coverage in all areas of molecular biology. The journal publishes original scientific research papers that provide mechanistic and functional insights and report a significant advance to the field. The journal encourages the submission of multidisciplinary studies that use complementary experimental and computational approaches to address challenging biological questions. Research areas include but are not limited to: Biomolecular interactions, signaling networks, systems biology; Cell cycle, cell growth, cell differentiation; Cell death, autophagy; Cell signaling and regulation; Chemical biology; Computational biology, in combination with experimental studies; DNA replication, repair, and recombination; Development, regenerative biology, mechanistic and functional studies of stem cells; Epigenetics, chromatin structure and function; Gene expression; Membrane processes, cell surface proteins and cell-cell interactions; Methodological advances, both experimental and theoretical, including databases; Microbiology, virology, and interactions with the host or environment; Microbiota mechanistic and functional studies; Nuclear organization; Post-translational modifications, proteomics; Processing and function of biologically important macromolecules and complexes; Molecular basis of disease; RNA processing, structure and functions of non-coding RNAs, transcription; Sorting, spatiotemporal organization, trafficking; Structural biology; Synthetic biology; Translation, protein folding, chaperones, protein degradation and quality control.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信