关注隐私的心理健康人工智能模型

IF 18.3 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Aishik Mandal, Tanmoy Chakraborty, Iryna Gurevych
{"title":"关注隐私的心理健康人工智能模型","authors":"Aishik Mandal, Tanmoy Chakraborty, Iryna Gurevych","doi":"10.1038/s43588-025-00875-w","DOIUrl":null,"url":null,"abstract":"Mental health disorders create profound personal and societal burdens, yet conventional diagnostics are resource-intensive and limit accessibility. Recent advances in artificial intelligence, particularly natural language processing and multimodal methods, offer promise for detecting and addressing mental disorders. However, these innovations also introduce privacy concerns. Here we examine these challenges and propose solutions, including anonymization, synthetic data and privacy-preserving training, while outlining frameworks for privacy–utility trade-offs, aiming to advance reliable, privacy-aware artificial-intelligence tools that support clinical decision-making and improve mental health outcomes. In this Perspective, the authors examine privacy risks in mental health AI, and explore solutions and evaluation frameworks to balance privacy–utility trade-offs. They suggest a pipeline for developing privacy-aware mental health AI systems.","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":"5 10","pages":"863-874"},"PeriodicalIF":18.3000,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards privacy-aware mental health AI models\",\"authors\":\"Aishik Mandal, Tanmoy Chakraborty, Iryna Gurevych\",\"doi\":\"10.1038/s43588-025-00875-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mental health disorders create profound personal and societal burdens, yet conventional diagnostics are resource-intensive and limit accessibility. Recent advances in artificial intelligence, particularly natural language processing and multimodal methods, offer promise for detecting and addressing mental disorders. However, these innovations also introduce privacy concerns. Here we examine these challenges and propose solutions, including anonymization, synthetic data and privacy-preserving training, while outlining frameworks for privacy–utility trade-offs, aiming to advance reliable, privacy-aware artificial-intelligence tools that support clinical decision-making and improve mental health outcomes. In this Perspective, the authors examine privacy risks in mental health AI, and explore solutions and evaluation frameworks to balance privacy–utility trade-offs. They suggest a pipeline for developing privacy-aware mental health AI systems.\",\"PeriodicalId\":74246,\"journal\":{\"name\":\"Nature computational science\",\"volume\":\"5 10\",\"pages\":\"863-874\"},\"PeriodicalIF\":18.3000,\"publicationDate\":\"2025-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature computational science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s43588-025-00875-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature computational science","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43588-025-00875-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

精神健康障碍给个人和社会造成了沉重的负担,但传统诊断方法资源密集,可及性有限。人工智能的最新进展,特别是自然语言处理和多模态方法,为发现和解决精神障碍提供了希望。然而,这些创新也带来了隐私问题。在这里,我们研究了这些挑战并提出了解决方案,包括匿名化、合成数据和隐私保护培训,同时概述了隐私-效用权衡的框架,旨在推进可靠的、隐私感知的人工智能工具,以支持临床决策并改善心理健康结果。从这个角度来看,作者研究了心理健康人工智能中的隐私风险,并探索了平衡隐私-效用权衡的解决方案和评估框架。他们建议开发具有隐私意识的心理健康人工智能系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Towards privacy-aware mental health AI models

Towards privacy-aware mental health AI models
Mental health disorders create profound personal and societal burdens, yet conventional diagnostics are resource-intensive and limit accessibility. Recent advances in artificial intelligence, particularly natural language processing and multimodal methods, offer promise for detecting and addressing mental disorders. However, these innovations also introduce privacy concerns. Here we examine these challenges and propose solutions, including anonymization, synthetic data and privacy-preserving training, while outlining frameworks for privacy–utility trade-offs, aiming to advance reliable, privacy-aware artificial-intelligence tools that support clinical decision-making and improve mental health outcomes. In this Perspective, the authors examine privacy risks in mental health AI, and explore solutions and evaluation frameworks to balance privacy–utility trade-offs. They suggest a pipeline for developing privacy-aware mental health AI systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信