海龟柔性水翼柔韧性及运动学参数对水动力性能的影响

IF 0.6 4区 工程技术 Q4 MECHANICS
H. Ding, H. P. Shi, Y. W. Zhu, H. P. Shen, Q. Gao, K. Chen
{"title":"海龟柔性水翼柔韧性及运动学参数对水动力性能的影响","authors":"H. Ding,&nbsp;H. P. Shi,&nbsp;Y. W. Zhu,&nbsp;H. P. Shen,&nbsp;Q. Gao,&nbsp;K. Chen","doi":"10.1134/S0015462825601640","DOIUrl":null,"url":null,"abstract":"<p>The patterns of motion of marine organisms provide a new method of propulsion for underwater vehicles, in which flapping foil propulsion is one of the more representative ones. The flexible flapping foil has better propulsion efficiency. The actual flapping foil motion is active and is passively deformed by water. However, numerical simulation is realized by setting up active deformations, making it difficult to accurately reproduce the real deformations. In the study, a pressure tester was used to measure the displacement of the flapping foil to fit the real deformation of the flapping foil, the motion of the sea turtle flapping foil is simplified to the pitching motion in a two-dimensional plane, and its kinematics is modeled. Furthermore, the effects of flexibility as well as kinematic parameters on the propulsive performance of the flapping foil were investigated by means of numerical simulation. The results show that proper flexibility (<i>R</i> = 0.12–0.16) is beneficial to the hydrodynamic performance of flexible foils, but too much flexibility adversely affects the propulsive performance. At a frequency of 1 Hz and an amplitude of 0.075 m, the flexibility that allows the flexible foil to achieve maximum efficiency is equal to 0.13. For the Reynolds number at 35 000 for a flapping foil, the <i>R</i> = 0.06 foil generates more propulsive force than the <i>R</i> = 0.08 foil when the Strouhal number St is smaller than 0.45. Conversely, the opposite is true. The application of these research results to the design of underwater vehicles can provide new ideas for the development of underwater vehicles.</p>","PeriodicalId":560,"journal":{"name":"Fluid Dynamics","volume":"60 5","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2025-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Sea Turtle Flexible Hydrofoil Flexibility and Kinematic Parameters on Hydrodynamic Performance\",\"authors\":\"H. Ding,&nbsp;H. P. Shi,&nbsp;Y. W. Zhu,&nbsp;H. P. Shen,&nbsp;Q. Gao,&nbsp;K. Chen\",\"doi\":\"10.1134/S0015462825601640\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The patterns of motion of marine organisms provide a new method of propulsion for underwater vehicles, in which flapping foil propulsion is one of the more representative ones. The flexible flapping foil has better propulsion efficiency. The actual flapping foil motion is active and is passively deformed by water. However, numerical simulation is realized by setting up active deformations, making it difficult to accurately reproduce the real deformations. In the study, a pressure tester was used to measure the displacement of the flapping foil to fit the real deformation of the flapping foil, the motion of the sea turtle flapping foil is simplified to the pitching motion in a two-dimensional plane, and its kinematics is modeled. Furthermore, the effects of flexibility as well as kinematic parameters on the propulsive performance of the flapping foil were investigated by means of numerical simulation. The results show that proper flexibility (<i>R</i> = 0.12–0.16) is beneficial to the hydrodynamic performance of flexible foils, but too much flexibility adversely affects the propulsive performance. At a frequency of 1 Hz and an amplitude of 0.075 m, the flexibility that allows the flexible foil to achieve maximum efficiency is equal to 0.13. For the Reynolds number at 35 000 for a flapping foil, the <i>R</i> = 0.06 foil generates more propulsive force than the <i>R</i> = 0.08 foil when the Strouhal number St is smaller than 0.45. Conversely, the opposite is true. The application of these research results to the design of underwater vehicles can provide new ideas for the development of underwater vehicles.</p>\",\"PeriodicalId\":560,\"journal\":{\"name\":\"Fluid Dynamics\",\"volume\":\"60 5\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2025-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fluid Dynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0015462825601640\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluid Dynamics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0015462825601640","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

海洋生物的运动模式为水下航行器的推进提供了一种新的方法,扑翼推进是其中较有代表性的一种。柔性扑翼具有较好的推进效率。实际的扑翼运动是主动的,受水的影响是被动的。然而,数值模拟是通过设置主动变形来实现的,难以准确再现真实变形。本研究采用压力测试仪测量扑翼的位移,拟合真实的扑翼变形,将海龟扑翼的运动简化为二维平面上的俯仰运动,并建立了其运动学模型。此外,通过数值模拟研究了柔性和运动参数对扑翼推进性能的影响。结果表明:适当的柔度(R = 0.12-0.16)有利于柔性箔的水动力性能,而柔度过大则不利于推进性能。在频率为1 Hz,振幅为0.075 m时,使柔性箔达到最大效率的灵活性等于0.13。在雷诺数为35 000时,当斯特劳哈尔数St小于0.45时,R = 0.06的扑翼产生的推进力大于R = 0.08的扑翼。反之亦然。将这些研究成果应用到水下航行器的设计中,可以为水下航行器的发展提供新的思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Effect of Sea Turtle Flexible Hydrofoil Flexibility and Kinematic Parameters on Hydrodynamic Performance

Effect of Sea Turtle Flexible Hydrofoil Flexibility and Kinematic Parameters on Hydrodynamic Performance

The patterns of motion of marine organisms provide a new method of propulsion for underwater vehicles, in which flapping foil propulsion is one of the more representative ones. The flexible flapping foil has better propulsion efficiency. The actual flapping foil motion is active and is passively deformed by water. However, numerical simulation is realized by setting up active deformations, making it difficult to accurately reproduce the real deformations. In the study, a pressure tester was used to measure the displacement of the flapping foil to fit the real deformation of the flapping foil, the motion of the sea turtle flapping foil is simplified to the pitching motion in a two-dimensional plane, and its kinematics is modeled. Furthermore, the effects of flexibility as well as kinematic parameters on the propulsive performance of the flapping foil were investigated by means of numerical simulation. The results show that proper flexibility (R = 0.12–0.16) is beneficial to the hydrodynamic performance of flexible foils, but too much flexibility adversely affects the propulsive performance. At a frequency of 1 Hz and an amplitude of 0.075 m, the flexibility that allows the flexible foil to achieve maximum efficiency is equal to 0.13. For the Reynolds number at 35 000 for a flapping foil, the R = 0.06 foil generates more propulsive force than the R = 0.08 foil when the Strouhal number St is smaller than 0.45. Conversely, the opposite is true. The application of these research results to the design of underwater vehicles can provide new ideas for the development of underwater vehicles.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fluid Dynamics
Fluid Dynamics MECHANICS-PHYSICS, FLUIDS & PLASMAS
CiteScore
1.30
自引率
22.20%
发文量
61
审稿时长
6-12 weeks
期刊介绍: Fluid Dynamics is an international peer reviewed journal that publishes theoretical, computational, and experimental research on aeromechanics, hydrodynamics, plasma dynamics, underground hydrodynamics, and biomechanics of continuous media. Special attention is given to new trends developing at the leading edge of science, such as theory and application of multi-phase flows, chemically reactive flows, liquid and gas flows in electromagnetic fields, new hydrodynamical methods of increasing oil output, new approaches to the description of turbulent flows, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信