超疏水功能表面液滴动力学分析

IF 0.6 4区 工程技术 Q4 MECHANICS
X. Y. Li, W. H. Li, Y. H. Qiu, X. F. Tang, Y. Wang, X. M. Yin, Y. W. Sun, Z. P. Zheng
{"title":"超疏水功能表面液滴动力学分析","authors":"X. Y. Li,&nbsp;W. H. Li,&nbsp;Y. H. Qiu,&nbsp;X. F. Tang,&nbsp;Y. Wang,&nbsp;X. M. Yin,&nbsp;Y. W. Sun,&nbsp;Z. P. Zheng","doi":"10.1134/S0015462825601718","DOIUrl":null,"url":null,"abstract":"<p>This paper investigates the influence of key factors on droplet dynamics on superhydrophobic surfaces, providing theoretical guidance for their design and application. Using the fluid flow module of COMSOL Multiphysics, a two-dimensional simulation of droplet collision and coalescence–rebound was carried out on surfaces with various microstructures. The simulation results agreed well with experimental data, confirming the accuracy of the model. The study shows that as microstructural spacing increases, the solid–liquid contact area decreases, wall viscous dissipation reduces, and droplets retract and rebound more rapidly. The surface morphology, the contact angle, the droplet radius, and the initial kinetic energy strongly affect the dynamic behavior. During coalescence and bouncing, both the droplet radius and the microstructural morphology are decisive, while the higher initial velocity enhances rebound. Conversely, a smaller radii ratio between two droplets hinders detachment and may cause rebound deviation. Overall, six dominant factors were identified, namely, three related to the surface structure and three to the droplet properties. These findings establish a theoretical foundation for optimizing the design and functional application to superhydrophobic surfaces.</p>","PeriodicalId":560,"journal":{"name":"Fluid Dynamics","volume":"60 5","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2025-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of Droplet Dynamics on Superhydrophobic Functional Surfaces\",\"authors\":\"X. Y. Li,&nbsp;W. H. Li,&nbsp;Y. H. Qiu,&nbsp;X. F. Tang,&nbsp;Y. Wang,&nbsp;X. M. Yin,&nbsp;Y. W. Sun,&nbsp;Z. P. Zheng\",\"doi\":\"10.1134/S0015462825601718\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper investigates the influence of key factors on droplet dynamics on superhydrophobic surfaces, providing theoretical guidance for their design and application. Using the fluid flow module of COMSOL Multiphysics, a two-dimensional simulation of droplet collision and coalescence–rebound was carried out on surfaces with various microstructures. The simulation results agreed well with experimental data, confirming the accuracy of the model. The study shows that as microstructural spacing increases, the solid–liquid contact area decreases, wall viscous dissipation reduces, and droplets retract and rebound more rapidly. The surface morphology, the contact angle, the droplet radius, and the initial kinetic energy strongly affect the dynamic behavior. During coalescence and bouncing, both the droplet radius and the microstructural morphology are decisive, while the higher initial velocity enhances rebound. Conversely, a smaller radii ratio between two droplets hinders detachment and may cause rebound deviation. Overall, six dominant factors were identified, namely, three related to the surface structure and three to the droplet properties. These findings establish a theoretical foundation for optimizing the design and functional application to superhydrophobic surfaces.</p>\",\"PeriodicalId\":560,\"journal\":{\"name\":\"Fluid Dynamics\",\"volume\":\"60 5\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2025-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fluid Dynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0015462825601718\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluid Dynamics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0015462825601718","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了影响超疏水表面液滴动力学的关键因素,为其设计和应用提供理论指导。利用COMSOL Multiphysics的流体流动模块,在不同微观结构的表面上进行了液滴碰撞、聚并-反弹的二维模拟。仿真结果与实验数据吻合较好,验证了模型的准确性。研究表明,随着微结构间距的增大,固液接触面积减小,壁面粘滞耗散减小,液滴收缩回弹速度加快。表面形貌、接触角、液滴半径和初始动能对动力学行为有很大影响。在聚并和弹跳过程中,液滴半径和微观组织形态都起决定性作用,而初始速度越高,弹跳越强。相反,两个液滴之间较小的半径比会阻碍分离,并可能导致反弹偏差。总体而言,确定了6个主导因素,即3个与表面结构有关,3个与液滴性质有关。这些发现为超疏水表面的优化设计和功能应用奠定了理论基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Analysis of Droplet Dynamics on Superhydrophobic Functional Surfaces

Analysis of Droplet Dynamics on Superhydrophobic Functional Surfaces

This paper investigates the influence of key factors on droplet dynamics on superhydrophobic surfaces, providing theoretical guidance for their design and application. Using the fluid flow module of COMSOL Multiphysics, a two-dimensional simulation of droplet collision and coalescence–rebound was carried out on surfaces with various microstructures. The simulation results agreed well with experimental data, confirming the accuracy of the model. The study shows that as microstructural spacing increases, the solid–liquid contact area decreases, wall viscous dissipation reduces, and droplets retract and rebound more rapidly. The surface morphology, the contact angle, the droplet radius, and the initial kinetic energy strongly affect the dynamic behavior. During coalescence and bouncing, both the droplet radius and the microstructural morphology are decisive, while the higher initial velocity enhances rebound. Conversely, a smaller radii ratio between two droplets hinders detachment and may cause rebound deviation. Overall, six dominant factors were identified, namely, three related to the surface structure and three to the droplet properties. These findings establish a theoretical foundation for optimizing the design and functional application to superhydrophobic surfaces.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fluid Dynamics
Fluid Dynamics MECHANICS-PHYSICS, FLUIDS & PLASMAS
CiteScore
1.30
自引率
22.20%
发文量
61
审稿时长
6-12 weeks
期刊介绍: Fluid Dynamics is an international peer reviewed journal that publishes theoretical, computational, and experimental research on aeromechanics, hydrodynamics, plasma dynamics, underground hydrodynamics, and biomechanics of continuous media. Special attention is given to new trends developing at the leading edge of science, such as theory and application of multi-phase flows, chemically reactive flows, liquid and gas flows in electromagnetic fields, new hydrodynamical methods of increasing oil output, new approaches to the description of turbulent flows, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信