铁路运输基础设施自动测量中人工智能驱动的土壤起伏谱分析

Artem Zaitsev, Andrey Koshurnikov, Vladimir Gagarin, Denis Frolov, German Rzhanitsyn
{"title":"铁路运输基础设施自动测量中人工智能驱动的土壤起伏谱分析","authors":"Artem Zaitsev,&nbsp;Andrey Koshurnikov,&nbsp;Vladimir Gagarin,&nbsp;Denis Frolov,&nbsp;German Rzhanitsyn","doi":"10.1007/s43503-025-00072-8","DOIUrl":null,"url":null,"abstract":"<div><p>The expansion of rail transport infrastructures necessitates accurate and efficient soil surveys to ensure long-term stability and performance, particularly in regions prone to soil heaving. This study aimed to demonstrate the potential of non-destructive spectral analysis combined with Agentic Artificial Intelligence for automating the identification of soil heaving potential, providing a transformative approach to soil assessment in railway construction. A robust AI-agent was developed to predict soil heaving potential across temperature regimes (ranging from 0°C to -5°C and back), enabling characterization of the relative acoustic compressibility coefficient (β) based on the physical and mechanical properties of the soil. The main objective was to develop a framework that integrated spectral reflectance data with machine learning algorithms to predict soil heaving potential and reduce the reliance on traditional invasive methods. The experimental setup employed digital techniques to process and record longitudinal and transverse acoustic pulse signals reflected from piezoelectric sensors mounted on soil specimens. The processed signals were automatically transferred via a USB adapter to a PC for further analysis by the AI-agent. Acoustic diagnostics of the soils were performed using Fast-Fourier Transform (FFT) Spectral Analysis, followed by correlation of waveform spectra with heaving deformation. The AI-agent utilized a hybrid architecture combining Convolutional Neural Network (CNN), Support Vector Machine (SVM), and Random Forest (RF) algorithms to address the complexities of heterogeneous soil data and multifaceted prediction tasks—including heaving classification and deformation regression—while mitigating overfitting. Soil heaving potential was accurately predicted by the AI agent, with minor variations attributed to equipment sensitivity. </p></div>","PeriodicalId":72138,"journal":{"name":"AI in civil engineering","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43503-025-00072-8.pdf","citationCount":"0","resultStr":"{\"title\":\"AI-driven spectral analysis of soil heaving for automated surveys in rail transport infrastructure\",\"authors\":\"Artem Zaitsev,&nbsp;Andrey Koshurnikov,&nbsp;Vladimir Gagarin,&nbsp;Denis Frolov,&nbsp;German Rzhanitsyn\",\"doi\":\"10.1007/s43503-025-00072-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The expansion of rail transport infrastructures necessitates accurate and efficient soil surveys to ensure long-term stability and performance, particularly in regions prone to soil heaving. This study aimed to demonstrate the potential of non-destructive spectral analysis combined with Agentic Artificial Intelligence for automating the identification of soil heaving potential, providing a transformative approach to soil assessment in railway construction. A robust AI-agent was developed to predict soil heaving potential across temperature regimes (ranging from 0°C to -5°C and back), enabling characterization of the relative acoustic compressibility coefficient (β) based on the physical and mechanical properties of the soil. The main objective was to develop a framework that integrated spectral reflectance data with machine learning algorithms to predict soil heaving potential and reduce the reliance on traditional invasive methods. The experimental setup employed digital techniques to process and record longitudinal and transverse acoustic pulse signals reflected from piezoelectric sensors mounted on soil specimens. The processed signals were automatically transferred via a USB adapter to a PC for further analysis by the AI-agent. Acoustic diagnostics of the soils were performed using Fast-Fourier Transform (FFT) Spectral Analysis, followed by correlation of waveform spectra with heaving deformation. The AI-agent utilized a hybrid architecture combining Convolutional Neural Network (CNN), Support Vector Machine (SVM), and Random Forest (RF) algorithms to address the complexities of heterogeneous soil data and multifaceted prediction tasks—including heaving classification and deformation regression—while mitigating overfitting. Soil heaving potential was accurately predicted by the AI agent, with minor variations attributed to equipment sensitivity. </p></div>\",\"PeriodicalId\":72138,\"journal\":{\"name\":\"AI in civil engineering\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s43503-025-00072-8.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AI in civil engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s43503-025-00072-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AI in civil engineering","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s43503-025-00072-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

铁路运输基础设施的扩展需要精确和有效的土壤调查,以确保长期稳定和性能,特别是在容易发生土壤起伏的地区。本研究旨在展示非破坏性光谱分析与人工智能相结合的潜力,以自动识别土壤隆起潜力,为铁路建设中的土壤评估提供一种变革性方法。研究人员开发了一种强大的人工智能代理,用于预测不同温度范围(从0°C到-5°C以及更低)的土壤起伏潜力,从而能够根据土壤的物理和机械特性表征相对声压缩系数(β)。主要目标是开发一个框架,将光谱反射数据与机器学习算法相结合,以预测土壤隆起潜力,减少对传统侵入方法的依赖。实验装置采用数字技术处理和记录安装在土样上的压电传感器反射的纵向和横向声脉冲信号。处理后的信号通过USB适配器自动传输到PC上,由ai代理进行进一步分析。采用快速傅立叶变换(FFT)谱分析方法对土体进行声学诊断,并将波形谱与起伏变形进行相关性分析。人工智能代理利用卷积神经网络(CNN)、支持向量机(SVM)和随机森林(RF)算法相结合的混合架构来解决异构土壤数据的复杂性和多方面的预测任务,包括起伏分类和变形回归,同时减轻过拟合。人工智能代理准确地预测了土壤起伏势,设备敏感性导致了微小的变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
AI-driven spectral analysis of soil heaving for automated surveys in rail transport infrastructure

The expansion of rail transport infrastructures necessitates accurate and efficient soil surveys to ensure long-term stability and performance, particularly in regions prone to soil heaving. This study aimed to demonstrate the potential of non-destructive spectral analysis combined with Agentic Artificial Intelligence for automating the identification of soil heaving potential, providing a transformative approach to soil assessment in railway construction. A robust AI-agent was developed to predict soil heaving potential across temperature regimes (ranging from 0°C to -5°C and back), enabling characterization of the relative acoustic compressibility coefficient (β) based on the physical and mechanical properties of the soil. The main objective was to develop a framework that integrated spectral reflectance data with machine learning algorithms to predict soil heaving potential and reduce the reliance on traditional invasive methods. The experimental setup employed digital techniques to process and record longitudinal and transverse acoustic pulse signals reflected from piezoelectric sensors mounted on soil specimens. The processed signals were automatically transferred via a USB adapter to a PC for further analysis by the AI-agent. Acoustic diagnostics of the soils were performed using Fast-Fourier Transform (FFT) Spectral Analysis, followed by correlation of waveform spectra with heaving deformation. The AI-agent utilized a hybrid architecture combining Convolutional Neural Network (CNN), Support Vector Machine (SVM), and Random Forest (RF) algorithms to address the complexities of heterogeneous soil data and multifaceted prediction tasks—including heaving classification and deformation regression—while mitigating overfitting. Soil heaving potential was accurately predicted by the AI agent, with minor variations attributed to equipment sensitivity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信