{"title":"知识图谱补全的高效关联上下文感知","authors":"Wenkai Tu, Guojia Wan, Zhengchun Shang, Bo Du","doi":"10.1007/s10489-025-06902-7","DOIUrl":null,"url":null,"abstract":"<div><p>Knowledge Graphs (KGs) provide a structured representation of knowledge but often suffer from challenges of incompleteness. To address this, link prediction or knowledge graph completion (KGC) aims to infer missing new facts based on existing facts in KGs. Previous knowledge graph embedding models are limited in their ability to capture expressive features, especially when compared to deeper, multi-layer models. These approaches also assign a single static embedding to each entity and relation, disregarding the fact that entities and relations can exhibit different behaviors in varying graph contexts. Due to complex context over a fact triple of a KG, existing methods have to leverage complex non-linear context encoder, like transformer, to project entity and relation into low dimensional representations, resulting in high computation cost. To overcome these limitations, we propose the Triple Receptance Perception (TRP) architecture–an attention-free and lightweight encoder inspired by RWKV–that models sequential dependencies to capture the dynamic contextual semantics of entities and relations. Then we use Tucker tensor decomposition to calculate triple scores, providing robust relational decoding capabilities. This integration allows for more expressive representations. Experiments on benchmark datasets such as YAGO3-10, UMLS, FB15k, and FB13 in link prediction and triple classification tasks demonstrate that our method performs better than several state-of-the-art models, proving the effectiveness of the integration.</p></div>","PeriodicalId":8041,"journal":{"name":"Applied Intelligence","volume":"55 15","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient relational context perception for knowledge graph completion\",\"authors\":\"Wenkai Tu, Guojia Wan, Zhengchun Shang, Bo Du\",\"doi\":\"10.1007/s10489-025-06902-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Knowledge Graphs (KGs) provide a structured representation of knowledge but often suffer from challenges of incompleteness. To address this, link prediction or knowledge graph completion (KGC) aims to infer missing new facts based on existing facts in KGs. Previous knowledge graph embedding models are limited in their ability to capture expressive features, especially when compared to deeper, multi-layer models. These approaches also assign a single static embedding to each entity and relation, disregarding the fact that entities and relations can exhibit different behaviors in varying graph contexts. Due to complex context over a fact triple of a KG, existing methods have to leverage complex non-linear context encoder, like transformer, to project entity and relation into low dimensional representations, resulting in high computation cost. To overcome these limitations, we propose the Triple Receptance Perception (TRP) architecture–an attention-free and lightweight encoder inspired by RWKV–that models sequential dependencies to capture the dynamic contextual semantics of entities and relations. Then we use Tucker tensor decomposition to calculate triple scores, providing robust relational decoding capabilities. This integration allows for more expressive representations. Experiments on benchmark datasets such as YAGO3-10, UMLS, FB15k, and FB13 in link prediction and triple classification tasks demonstrate that our method performs better than several state-of-the-art models, proving the effectiveness of the integration.</p></div>\",\"PeriodicalId\":8041,\"journal\":{\"name\":\"Applied Intelligence\",\"volume\":\"55 15\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10489-025-06902-7\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Intelligence","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10489-025-06902-7","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Efficient relational context perception for knowledge graph completion
Knowledge Graphs (KGs) provide a structured representation of knowledge but often suffer from challenges of incompleteness. To address this, link prediction or knowledge graph completion (KGC) aims to infer missing new facts based on existing facts in KGs. Previous knowledge graph embedding models are limited in their ability to capture expressive features, especially when compared to deeper, multi-layer models. These approaches also assign a single static embedding to each entity and relation, disregarding the fact that entities and relations can exhibit different behaviors in varying graph contexts. Due to complex context over a fact triple of a KG, existing methods have to leverage complex non-linear context encoder, like transformer, to project entity and relation into low dimensional representations, resulting in high computation cost. To overcome these limitations, we propose the Triple Receptance Perception (TRP) architecture–an attention-free and lightweight encoder inspired by RWKV–that models sequential dependencies to capture the dynamic contextual semantics of entities and relations. Then we use Tucker tensor decomposition to calculate triple scores, providing robust relational decoding capabilities. This integration allows for more expressive representations. Experiments on benchmark datasets such as YAGO3-10, UMLS, FB15k, and FB13 in link prediction and triple classification tasks demonstrate that our method performs better than several state-of-the-art models, proving the effectiveness of the integration.
期刊介绍:
With a focus on research in artificial intelligence and neural networks, this journal addresses issues involving solutions of real-life manufacturing, defense, management, government and industrial problems which are too complex to be solved through conventional approaches and require the simulation of intelligent thought processes, heuristics, applications of knowledge, and distributed and parallel processing. The integration of these multiple approaches in solving complex problems is of particular importance.
The journal presents new and original research and technological developments, addressing real and complex issues applicable to difficult problems. It provides a medium for exchanging scientific research and technological achievements accomplished by the international community.