{"title":"加速辐射中洛伦兹破坏的观测特征","authors":"Yu Tang, Wentao Liu, Jieci Wang","doi":"10.1140/epjc/s10052-025-14797-4","DOIUrl":null,"url":null,"abstract":"<div><p>In recent years, Lorentz violation (LV) has emerged as a vibrant area of research in fundamental physics. Despite predictions from quantum gravity theories that Lorentz symmetry may break down at Planck-scale energies, which are currently beyond experimental reach, its low-energy signatures could still be detectable through alternative methods. In this paper, we propose a quantum optical approach to investigate potential LV effects on the acceleration radiation of a freely falling atom within a black hole spacetime coupled to a Lorentz-violating vector field. Our proposed experimental setup employs a Casimir-type apparatus, wherein a two-level atom serves as a dipole detector, enabling its interaction with the field to be modeled using principles from quantum optics. We demonstrate that LV can introduce distinct quantum signatures into the radiation flux, thereby significantly modulating particle emission rates. It is found that while LV effects are negligible at high mode frequencies, they become increasingly pronounced at lower frequencies. This suggests that detecting LV at low-energy scales may depend on advancements in low-frequency observational techniques or detectors.\n</p></div>","PeriodicalId":788,"journal":{"name":"The European Physical Journal C","volume":"85 10","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjc/s10052-025-14797-4.pdf","citationCount":"0","resultStr":"{\"title\":\"Observational signature of Lorentz violation in acceleration radiation\",\"authors\":\"Yu Tang, Wentao Liu, Jieci Wang\",\"doi\":\"10.1140/epjc/s10052-025-14797-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In recent years, Lorentz violation (LV) has emerged as a vibrant area of research in fundamental physics. Despite predictions from quantum gravity theories that Lorentz symmetry may break down at Planck-scale energies, which are currently beyond experimental reach, its low-energy signatures could still be detectable through alternative methods. In this paper, we propose a quantum optical approach to investigate potential LV effects on the acceleration radiation of a freely falling atom within a black hole spacetime coupled to a Lorentz-violating vector field. Our proposed experimental setup employs a Casimir-type apparatus, wherein a two-level atom serves as a dipole detector, enabling its interaction with the field to be modeled using principles from quantum optics. We demonstrate that LV can introduce distinct quantum signatures into the radiation flux, thereby significantly modulating particle emission rates. It is found that while LV effects are negligible at high mode frequencies, they become increasingly pronounced at lower frequencies. This suggests that detecting LV at low-energy scales may depend on advancements in low-frequency observational techniques or detectors.\\n</p></div>\",\"PeriodicalId\":788,\"journal\":{\"name\":\"The European Physical Journal C\",\"volume\":\"85 10\",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1140/epjc/s10052-025-14797-4.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The European Physical Journal C\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epjc/s10052-025-14797-4\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, PARTICLES & FIELDS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal C","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjc/s10052-025-14797-4","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
Observational signature of Lorentz violation in acceleration radiation
In recent years, Lorentz violation (LV) has emerged as a vibrant area of research in fundamental physics. Despite predictions from quantum gravity theories that Lorentz symmetry may break down at Planck-scale energies, which are currently beyond experimental reach, its low-energy signatures could still be detectable through alternative methods. In this paper, we propose a quantum optical approach to investigate potential LV effects on the acceleration radiation of a freely falling atom within a black hole spacetime coupled to a Lorentz-violating vector field. Our proposed experimental setup employs a Casimir-type apparatus, wherein a two-level atom serves as a dipole detector, enabling its interaction with the field to be modeled using principles from quantum optics. We demonstrate that LV can introduce distinct quantum signatures into the radiation flux, thereby significantly modulating particle emission rates. It is found that while LV effects are negligible at high mode frequencies, they become increasingly pronounced at lower frequencies. This suggests that detecting LV at low-energy scales may depend on advancements in low-frequency observational techniques or detectors.
期刊介绍:
Experimental Physics I: Accelerator Based High-Energy Physics
Hadron and lepton collider physics
Lepton-nucleon scattering
High-energy nuclear reactions
Standard model precision tests
Search for new physics beyond the standard model
Heavy flavour physics
Neutrino properties
Particle detector developments
Computational methods and analysis tools
Experimental Physics II: Astroparticle Physics
Dark matter searches
High-energy cosmic rays
Double beta decay
Long baseline neutrino experiments
Neutrino astronomy
Axions and other weakly interacting light particles
Gravitational waves and observational cosmology
Particle detector developments
Computational methods and analysis tools
Theoretical Physics I: Phenomenology of the Standard Model and Beyond
Electroweak interactions
Quantum chromo dynamics
Heavy quark physics and quark flavour mixing
Neutrino physics
Phenomenology of astro- and cosmoparticle physics
Meson spectroscopy and non-perturbative QCD
Low-energy effective field theories
Lattice field theory
High temperature QCD and heavy ion physics
Phenomenology of supersymmetric extensions of the SM
Phenomenology of non-supersymmetric extensions of the SM
Model building and alternative models of electroweak symmetry breaking
Flavour physics beyond the SM
Computational algorithms and tools...etc.