原始黑洞与非极小导数耦合膨胀模型中声速共振的标量诱导引力波

IF 4.8 2区 物理与天体物理 Q2 PHYSICS, PARTICLES & FIELDS
Li-Shuai Wang, Qiong-Tao Xie, Li-Yang Chen
{"title":"原始黑洞与非极小导数耦合膨胀模型中声速共振的标量诱导引力波","authors":"Li-Shuai Wang,&nbsp;Qiong-Tao Xie,&nbsp;Li-Yang Chen","doi":"10.1140/epjc/s10052-025-14840-4","DOIUrl":null,"url":null,"abstract":"<div><p>We investigate an inflationary model with a non-minimal derivative coupling, where the coupling function contains both constant and periodic components. On large scales, the model is in excellent agreement with the latest Planck-ACT-LiteBIRD-BICEP/Keck 2018 (P-ACT-LB-BK18) observations. On small scales, the periodic component induces a sound-speed resonance mechanism that significantly amplifies curvature perturbations, resulting in the production of primordial black holes (PBHs). By incorporating nonlinear effects in the PBH abundance calculation, we find that the resulting PBHs can account for the majority of dark matter in the Universe. Furthermore, the PBH formation process generates scalar-induced gravitational waves (SIGWs) with a characteristic multi-peak spectral shape, which may be detectable by future space-based detectors such as LISA, Taiji, and TianQin. The model also predicts a high-frequency stochastic gravitational-wave background (SGWB) from PBH binary mergers. A combined detection of SIGWs and high-frequency gravitational waves (GWs) in future experiments would provide a direct and testable probe of this inflationary scenario.\n</p></div>","PeriodicalId":788,"journal":{"name":"The European Physical Journal C","volume":"85 10","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjc/s10052-025-14840-4.pdf","citationCount":"0","resultStr":"{\"title\":\"Primordial black holes and scalar induced gravitational waves from sound speed resonance in non-minimal derivative coupling inflation model\",\"authors\":\"Li-Shuai Wang,&nbsp;Qiong-Tao Xie,&nbsp;Li-Yang Chen\",\"doi\":\"10.1140/epjc/s10052-025-14840-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We investigate an inflationary model with a non-minimal derivative coupling, where the coupling function contains both constant and periodic components. On large scales, the model is in excellent agreement with the latest Planck-ACT-LiteBIRD-BICEP/Keck 2018 (P-ACT-LB-BK18) observations. On small scales, the periodic component induces a sound-speed resonance mechanism that significantly amplifies curvature perturbations, resulting in the production of primordial black holes (PBHs). By incorporating nonlinear effects in the PBH abundance calculation, we find that the resulting PBHs can account for the majority of dark matter in the Universe. Furthermore, the PBH formation process generates scalar-induced gravitational waves (SIGWs) with a characteristic multi-peak spectral shape, which may be detectable by future space-based detectors such as LISA, Taiji, and TianQin. The model also predicts a high-frequency stochastic gravitational-wave background (SGWB) from PBH binary mergers. A combined detection of SIGWs and high-frequency gravitational waves (GWs) in future experiments would provide a direct and testable probe of this inflationary scenario.\\n</p></div>\",\"PeriodicalId\":788,\"journal\":{\"name\":\"The European Physical Journal C\",\"volume\":\"85 10\",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1140/epjc/s10052-025-14840-4.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The European Physical Journal C\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epjc/s10052-025-14840-4\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, PARTICLES & FIELDS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal C","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjc/s10052-025-14840-4","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 0

摘要

研究了具有非极小导数耦合的膨胀模型,该模型的耦合函数同时包含常数分量和周期分量。在大尺度上,该模型与最新的普朗克- act - litebird - bicep /Keck 2018 (P-ACT-LB-BK18)观测结果非常吻合。在小尺度上,周期分量诱发声速共振机制,显著放大曲率扰动,导致原始黑洞(PBHs)的产生。通过在PBH丰度计算中加入非线性效应,我们发现由此产生的PBH可以解释宇宙中大部分暗物质。此外,PBH形成过程产生的标量诱导引力波(SIGWs)具有特征的多峰光谱形状,可能被未来的天基探测器(如LISA, Taiji和TianQin)探测到。该模型还预测了来自PBH双星合并的高频随机引力波背景(SGWB)。在未来的实验中,对sigw和高频引力波(GWs)的联合探测将为这种暴胀情景提供直接和可测试的探测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Primordial black holes and scalar induced gravitational waves from sound speed resonance in non-minimal derivative coupling inflation model

We investigate an inflationary model with a non-minimal derivative coupling, where the coupling function contains both constant and periodic components. On large scales, the model is in excellent agreement with the latest Planck-ACT-LiteBIRD-BICEP/Keck 2018 (P-ACT-LB-BK18) observations. On small scales, the periodic component induces a sound-speed resonance mechanism that significantly amplifies curvature perturbations, resulting in the production of primordial black holes (PBHs). By incorporating nonlinear effects in the PBH abundance calculation, we find that the resulting PBHs can account for the majority of dark matter in the Universe. Furthermore, the PBH formation process generates scalar-induced gravitational waves (SIGWs) with a characteristic multi-peak spectral shape, which may be detectable by future space-based detectors such as LISA, Taiji, and TianQin. The model also predicts a high-frequency stochastic gravitational-wave background (SGWB) from PBH binary mergers. A combined detection of SIGWs and high-frequency gravitational waves (GWs) in future experiments would provide a direct and testable probe of this inflationary scenario.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The European Physical Journal C
The European Physical Journal C 物理-物理:粒子与场物理
CiteScore
8.10
自引率
15.90%
发文量
1008
审稿时长
2-4 weeks
期刊介绍: Experimental Physics I: Accelerator Based High-Energy Physics Hadron and lepton collider physics Lepton-nucleon scattering High-energy nuclear reactions Standard model precision tests Search for new physics beyond the standard model Heavy flavour physics Neutrino properties Particle detector developments Computational methods and analysis tools Experimental Physics II: Astroparticle Physics Dark matter searches High-energy cosmic rays Double beta decay Long baseline neutrino experiments Neutrino astronomy Axions and other weakly interacting light particles Gravitational waves and observational cosmology Particle detector developments Computational methods and analysis tools Theoretical Physics I: Phenomenology of the Standard Model and Beyond Electroweak interactions Quantum chromo dynamics Heavy quark physics and quark flavour mixing Neutrino physics Phenomenology of astro- and cosmoparticle physics Meson spectroscopy and non-perturbative QCD Low-energy effective field theories Lattice field theory High temperature QCD and heavy ion physics Phenomenology of supersymmetric extensions of the SM Phenomenology of non-supersymmetric extensions of the SM Model building and alternative models of electroweak symmetry breaking Flavour physics beyond the SM Computational algorithms and tools...etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信