若干无限图族的彩虹连通数

IF 0.7 Q2 MATHEMATICS
Liam B. Baker, Jonathan Kariv, Ronald J. Maartens
{"title":"若干无限图族的彩虹连通数","authors":"Liam B. Baker,&nbsp;Jonathan Kariv,&nbsp;Ronald J. Maartens","doi":"10.1007/s13370-025-01381-y","DOIUrl":null,"url":null,"abstract":"<div><p>Let <i>G</i> be a nontrivial connected graph with an edge coloring, and let <span>\\(u,v \\in V(G)\\)</span>. A <span>\\(u-v\\)</span> path in <i>G</i> is said to be a <i>rainbow path</i> if no color is repeated on the edges of the path. Similarly, we define a <i>rainbow geodesic</i>. A <i>rainbow connected graph</i> <i>G</i> is a graph with an edge coloring such that every two vertices in <i>G</i> are connected by a rainbow path. Further, a <i>strong rainbow connected graph</i> <i>G</i> is a graph with an edge coloring such that every two vertices in <i>G</i> is connected by a rainbow geodesic. The minimum number of colors needed to make a graph rainbow connected is called the <i>rainbow connection number</i>, denoted <span>\\({{\\,\\textrm{rc}\\,}}(G)\\)</span>, and the minimum number of colors needed to make a graph strong rainbow connected is called the <i>strong rainbow connection number</i>, denoted <span>\\({{\\,\\textrm{src}\\,}}(G)\\)</span>. In this paper we determine <span>\\({{\\,\\textrm{rc}\\,}}(G)\\)</span> and <span>\\({{\\,\\textrm{src}\\,}}(G)\\)</span> when <i>G</i> is a <i>n</i>-dimensional rectangular grid graph, triangular grid graph, hexagonal grid graph, and a (weak) Bruhat graph, respectively. We show for all these families that <span>\\({{\\,\\textrm{src}\\,}}(G)={{\\,\\textrm{diam}\\,}}(G)\\)</span>.</p></div>","PeriodicalId":46107,"journal":{"name":"Afrika Matematika","volume":"36 4","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13370-025-01381-y.pdf","citationCount":"0","resultStr":"{\"title\":\"The rainbow connected number of several infinite graph families\",\"authors\":\"Liam B. Baker,&nbsp;Jonathan Kariv,&nbsp;Ronald J. Maartens\",\"doi\":\"10.1007/s13370-025-01381-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <i>G</i> be a nontrivial connected graph with an edge coloring, and let <span>\\\\(u,v \\\\in V(G)\\\\)</span>. A <span>\\\\(u-v\\\\)</span> path in <i>G</i> is said to be a <i>rainbow path</i> if no color is repeated on the edges of the path. Similarly, we define a <i>rainbow geodesic</i>. A <i>rainbow connected graph</i> <i>G</i> is a graph with an edge coloring such that every two vertices in <i>G</i> are connected by a rainbow path. Further, a <i>strong rainbow connected graph</i> <i>G</i> is a graph with an edge coloring such that every two vertices in <i>G</i> is connected by a rainbow geodesic. The minimum number of colors needed to make a graph rainbow connected is called the <i>rainbow connection number</i>, denoted <span>\\\\({{\\\\,\\\\textrm{rc}\\\\,}}(G)\\\\)</span>, and the minimum number of colors needed to make a graph strong rainbow connected is called the <i>strong rainbow connection number</i>, denoted <span>\\\\({{\\\\,\\\\textrm{src}\\\\,}}(G)\\\\)</span>. In this paper we determine <span>\\\\({{\\\\,\\\\textrm{rc}\\\\,}}(G)\\\\)</span> and <span>\\\\({{\\\\,\\\\textrm{src}\\\\,}}(G)\\\\)</span> when <i>G</i> is a <i>n</i>-dimensional rectangular grid graph, triangular grid graph, hexagonal grid graph, and a (weak) Bruhat graph, respectively. We show for all these families that <span>\\\\({{\\\\,\\\\textrm{src}\\\\,}}(G)={{\\\\,\\\\textrm{diam}\\\\,}}(G)\\\\)</span>.</p></div>\",\"PeriodicalId\":46107,\"journal\":{\"name\":\"Afrika Matematika\",\"volume\":\"36 4\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s13370-025-01381-y.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Afrika Matematika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13370-025-01381-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Afrika Matematika","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s13370-025-01381-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设G是一个边着色的非平凡连通图,设\(u,v \in V(G)\)。如果路径边缘没有重复的颜色,则G中的\(u-v\)路径被称为彩虹路径。同样,我们定义彩虹测地线。彩虹连通图G是一种具有边缘着色的图,使得G中的每两个顶点都通过彩虹路径连接。此外,强彩虹连通图G是具有边缘着色的图,使得G中的每两个顶点由彩虹测地线连接。使图形具有彩虹连接所需的最小颜色数称为彩虹连接数,记为\({{\,\textrm{rc}\,}}(G)\),而使图形具有强彩虹连接数所需的最小颜色数称为强彩虹连接数,记为\({{\,\textrm{src}\,}}(G)\)。本文分别确定了当G为n维矩形网格图、三角形网格图、六边形网格图和(弱)Bruhat图时的\({{\,\textrm{rc}\,}}(G)\)和\({{\,\textrm{src}\,}}(G)\)。我们向所有这些家庭展示\({{\,\textrm{src}\,}}(G)={{\,\textrm{diam}\,}}(G)\)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The rainbow connected number of several infinite graph families

Let G be a nontrivial connected graph with an edge coloring, and let \(u,v \in V(G)\). A \(u-v\) path in G is said to be a rainbow path if no color is repeated on the edges of the path. Similarly, we define a rainbow geodesic. A rainbow connected graph G is a graph with an edge coloring such that every two vertices in G are connected by a rainbow path. Further, a strong rainbow connected graph G is a graph with an edge coloring such that every two vertices in G is connected by a rainbow geodesic. The minimum number of colors needed to make a graph rainbow connected is called the rainbow connection number, denoted \({{\,\textrm{rc}\,}}(G)\), and the minimum number of colors needed to make a graph strong rainbow connected is called the strong rainbow connection number, denoted \({{\,\textrm{src}\,}}(G)\). In this paper we determine \({{\,\textrm{rc}\,}}(G)\) and \({{\,\textrm{src}\,}}(G)\) when G is a n-dimensional rectangular grid graph, triangular grid graph, hexagonal grid graph, and a (weak) Bruhat graph, respectively. We show for all these families that \({{\,\textrm{src}\,}}(G)={{\,\textrm{diam}\,}}(G)\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Afrika Matematika
Afrika Matematika MATHEMATICS-
CiteScore
2.00
自引率
9.10%
发文量
96
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信