{"title":"以b为基底的数字是两个k-广义佩尔数的乘积","authors":"Zafer Şiar","doi":"10.1007/s13370-025-01384-9","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\(k\\ge 2\\)</span> be an integer. The <i>k</i>-generalized Pell sequence <span>\\((P_{n}^{(k)})_{n\\ge 2-k}\\)</span> is defined by the initial values <span>\\(0,0,\\ldots ,0,1\\)</span>(<i>k</i> terms) and the recurrence <span>\\(P_{n}^{(k)}=2P_{n-1}^{(k)}+P_{n-2}^{(k)}+\\ldots +P_{n-k}^{(k)}\\)</span> for all <span>\\(n\\ge 2\\)</span>. In this study, we deal with the Diophantine equation </p><div><div><span>$$P_{n}^{(k)}P_{m}^{(k)}=d\\left( \\frac{b^{l}-1}{b-1}\\right)$$</span></div></div><p>in positive integers <i>n</i>, <i>m</i>, <i>k</i>, <i>b</i>, <i>d</i>, <i>l</i> with <span>\\(k\\ge 3,l\\ge 2,~2\\le m\\le n,\\)</span> <span>\\(2\\le b\\le 10,\\)</span> and <span>\\(1\\le d\\le b-1,\\)</span> and we show that all solutions of this equation are given by </p><div><div><span>$$\\begin{aligned} P_{2}^{(k)}P_{2}^{(k)}&=(11)_{3},~P_{3}^{(k)}P_{2}^{(k)}=(22)_{4}=(11)_{9}\\text {, }P_{4}^{(k)}P_{2}^{(k)}=(222)_{3}\\text { for }k\\ge 3,\\\\ P_{5}^{(k)}P_{3}^{(k)}&=(2222)_{4}\\text { for }k\\ge 4, \\end{aligned}$$</span></div></div><p>and </p><div><div><span>$$P_{5}^{(3)}P_{2}^{(3)}=\\left( 66\\right) _{10}.$$</span></div></div></div>","PeriodicalId":46107,"journal":{"name":"Afrika Matematika","volume":"36 4","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Repdigits in base b as product of two k-generalized Pell numbers\",\"authors\":\"Zafer Şiar\",\"doi\":\"10.1007/s13370-025-01384-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span>\\\\(k\\\\ge 2\\\\)</span> be an integer. The <i>k</i>-generalized Pell sequence <span>\\\\((P_{n}^{(k)})_{n\\\\ge 2-k}\\\\)</span> is defined by the initial values <span>\\\\(0,0,\\\\ldots ,0,1\\\\)</span>(<i>k</i> terms) and the recurrence <span>\\\\(P_{n}^{(k)}=2P_{n-1}^{(k)}+P_{n-2}^{(k)}+\\\\ldots +P_{n-k}^{(k)}\\\\)</span> for all <span>\\\\(n\\\\ge 2\\\\)</span>. In this study, we deal with the Diophantine equation </p><div><div><span>$$P_{n}^{(k)}P_{m}^{(k)}=d\\\\left( \\\\frac{b^{l}-1}{b-1}\\\\right)$$</span></div></div><p>in positive integers <i>n</i>, <i>m</i>, <i>k</i>, <i>b</i>, <i>d</i>, <i>l</i> with <span>\\\\(k\\\\ge 3,l\\\\ge 2,~2\\\\le m\\\\le n,\\\\)</span> <span>\\\\(2\\\\le b\\\\le 10,\\\\)</span> and <span>\\\\(1\\\\le d\\\\le b-1,\\\\)</span> and we show that all solutions of this equation are given by </p><div><div><span>$$\\\\begin{aligned} P_{2}^{(k)}P_{2}^{(k)}&=(11)_{3},~P_{3}^{(k)}P_{2}^{(k)}=(22)_{4}=(11)_{9}\\\\text {, }P_{4}^{(k)}P_{2}^{(k)}=(222)_{3}\\\\text { for }k\\\\ge 3,\\\\\\\\ P_{5}^{(k)}P_{3}^{(k)}&=(2222)_{4}\\\\text { for }k\\\\ge 4, \\\\end{aligned}$$</span></div></div><p>and </p><div><div><span>$$P_{5}^{(3)}P_{2}^{(3)}=\\\\left( 66\\\\right) _{10}.$$</span></div></div></div>\",\"PeriodicalId\":46107,\"journal\":{\"name\":\"Afrika Matematika\",\"volume\":\"36 4\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Afrika Matematika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13370-025-01384-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Afrika Matematika","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s13370-025-01384-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Repdigits in base b as product of two k-generalized Pell numbers
Let \(k\ge 2\) be an integer. The k-generalized Pell sequence \((P_{n}^{(k)})_{n\ge 2-k}\) is defined by the initial values \(0,0,\ldots ,0,1\)(k terms) and the recurrence \(P_{n}^{(k)}=2P_{n-1}^{(k)}+P_{n-2}^{(k)}+\ldots +P_{n-k}^{(k)}\) for all \(n\ge 2\). In this study, we deal with the Diophantine equation
in positive integers n, m, k, b, d, l with \(k\ge 3,l\ge 2,~2\le m\le n,\)\(2\le b\le 10,\) and \(1\le d\le b-1,\) and we show that all solutions of this equation are given by
$$\begin{aligned} P_{2}^{(k)}P_{2}^{(k)}&=(11)_{3},~P_{3}^{(k)}P_{2}^{(k)}=(22)_{4}=(11)_{9}\text {, }P_{4}^{(k)}P_{2}^{(k)}=(222)_{3}\text { for }k\ge 3,\\ P_{5}^{(k)}P_{3}^{(k)}&=(2222)_{4}\text { for }k\ge 4, \end{aligned}$$