以b为基底的数字是两个k-广义佩尔数的乘积

IF 0.7 Q2 MATHEMATICS
Zafer Şiar
{"title":"以b为基底的数字是两个k-广义佩尔数的乘积","authors":"Zafer Şiar","doi":"10.1007/s13370-025-01384-9","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\(k\\ge 2\\)</span> be an integer. The <i>k</i>-generalized Pell sequence <span>\\((P_{n}^{(k)})_{n\\ge 2-k}\\)</span> is defined by the initial values <span>\\(0,0,\\ldots ,0,1\\)</span>(<i>k</i> terms) and the recurrence <span>\\(P_{n}^{(k)}=2P_{n-1}^{(k)}+P_{n-2}^{(k)}+\\ldots +P_{n-k}^{(k)}\\)</span> for all <span>\\(n\\ge 2\\)</span>. In this study, we deal with the Diophantine equation </p><div><div><span>$$P_{n}^{(k)}P_{m}^{(k)}=d\\left( \\frac{b^{l}-1}{b-1}\\right)$$</span></div></div><p>in positive integers <i>n</i>, <i>m</i>, <i>k</i>, <i>b</i>, <i>d</i>, <i>l</i> with <span>\\(k\\ge 3,l\\ge 2,~2\\le m\\le n,\\)</span> <span>\\(2\\le b\\le 10,\\)</span> and <span>\\(1\\le d\\le b-1,\\)</span> and we show that all solutions of this equation are given by </p><div><div><span>$$\\begin{aligned} P_{2}^{(k)}P_{2}^{(k)}&amp;=(11)_{3},~P_{3}^{(k)}P_{2}^{(k)}=(22)_{4}=(11)_{9}\\text {, }P_{4}^{(k)}P_{2}^{(k)}=(222)_{3}\\text { for }k\\ge 3,\\\\ P_{5}^{(k)}P_{3}^{(k)}&amp;=(2222)_{4}\\text { for }k\\ge 4, \\end{aligned}$$</span></div></div><p>and </p><div><div><span>$$P_{5}^{(3)}P_{2}^{(3)}=\\left( 66\\right) _{10}.$$</span></div></div></div>","PeriodicalId":46107,"journal":{"name":"Afrika Matematika","volume":"36 4","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Repdigits in base b as product of two k-generalized Pell numbers\",\"authors\":\"Zafer Şiar\",\"doi\":\"10.1007/s13370-025-01384-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span>\\\\(k\\\\ge 2\\\\)</span> be an integer. The <i>k</i>-generalized Pell sequence <span>\\\\((P_{n}^{(k)})_{n\\\\ge 2-k}\\\\)</span> is defined by the initial values <span>\\\\(0,0,\\\\ldots ,0,1\\\\)</span>(<i>k</i> terms) and the recurrence <span>\\\\(P_{n}^{(k)}=2P_{n-1}^{(k)}+P_{n-2}^{(k)}+\\\\ldots +P_{n-k}^{(k)}\\\\)</span> for all <span>\\\\(n\\\\ge 2\\\\)</span>. In this study, we deal with the Diophantine equation </p><div><div><span>$$P_{n}^{(k)}P_{m}^{(k)}=d\\\\left( \\\\frac{b^{l}-1}{b-1}\\\\right)$$</span></div></div><p>in positive integers <i>n</i>, <i>m</i>, <i>k</i>, <i>b</i>, <i>d</i>, <i>l</i> with <span>\\\\(k\\\\ge 3,l\\\\ge 2,~2\\\\le m\\\\le n,\\\\)</span> <span>\\\\(2\\\\le b\\\\le 10,\\\\)</span> and <span>\\\\(1\\\\le d\\\\le b-1,\\\\)</span> and we show that all solutions of this equation are given by </p><div><div><span>$$\\\\begin{aligned} P_{2}^{(k)}P_{2}^{(k)}&amp;=(11)_{3},~P_{3}^{(k)}P_{2}^{(k)}=(22)_{4}=(11)_{9}\\\\text {, }P_{4}^{(k)}P_{2}^{(k)}=(222)_{3}\\\\text { for }k\\\\ge 3,\\\\\\\\ P_{5}^{(k)}P_{3}^{(k)}&amp;=(2222)_{4}\\\\text { for }k\\\\ge 4, \\\\end{aligned}$$</span></div></div><p>and </p><div><div><span>$$P_{5}^{(3)}P_{2}^{(3)}=\\\\left( 66\\\\right) _{10}.$$</span></div></div></div>\",\"PeriodicalId\":46107,\"journal\":{\"name\":\"Afrika Matematika\",\"volume\":\"36 4\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Afrika Matematika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13370-025-01384-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Afrika Matematika","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s13370-025-01384-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设\(k\ge 2\)为整数。k广义Pell序列\((P_{n}^{(k)})_{n\ge 2-k}\)由初始值\(0,0,\ldots ,0,1\) (k项)和所有\(n\ge 2\)的递归式\(P_{n}^{(k)}=2P_{n-1}^{(k)}+P_{n-2}^{(k)}+\ldots +P_{n-k}^{(k)}\)定义。在本研究中,我们用\(k\ge 3,l\ge 2,~2\le m\le n,\)\(2\le b\le 10,\)和\(1\le d\le b-1,\)处理了正整数n, m, k, b, d, l中的丢芬图方程$$P_{n}^{(k)}P_{m}^{(k)}=d\left( \frac{b^{l}-1}{b-1}\right)$$,并证明了该方程的所有解都由$$\begin{aligned} P_{2}^{(k)}P_{2}^{(k)}&=(11)_{3},~P_{3}^{(k)}P_{2}^{(k)}=(22)_{4}=(11)_{9}\text {, }P_{4}^{(k)}P_{2}^{(k)}=(222)_{3}\text { for }k\ge 3,\\ P_{5}^{(k)}P_{3}^{(k)}&=(2222)_{4}\text { for }k\ge 4, \end{aligned}$$和给出 $$P_{5}^{(3)}P_{2}^{(3)}=\left( 66\right) _{10}.$$
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Repdigits in base b as product of two k-generalized Pell numbers

Let \(k\ge 2\) be an integer. The k-generalized Pell sequence \((P_{n}^{(k)})_{n\ge 2-k}\) is defined by the initial values \(0,0,\ldots ,0,1\)(k terms) and the recurrence \(P_{n}^{(k)}=2P_{n-1}^{(k)}+P_{n-2}^{(k)}+\ldots +P_{n-k}^{(k)}\) for all \(n\ge 2\). In this study, we deal with the Diophantine equation

$$P_{n}^{(k)}P_{m}^{(k)}=d\left( \frac{b^{l}-1}{b-1}\right)$$

in positive integers nmkbdl with \(k\ge 3,l\ge 2,~2\le m\le n,\) \(2\le b\le 10,\) and \(1\le d\le b-1,\) and we show that all solutions of this equation are given by

$$\begin{aligned} P_{2}^{(k)}P_{2}^{(k)}&=(11)_{3},~P_{3}^{(k)}P_{2}^{(k)}=(22)_{4}=(11)_{9}\text {, }P_{4}^{(k)}P_{2}^{(k)}=(222)_{3}\text { for }k\ge 3,\\ P_{5}^{(k)}P_{3}^{(k)}&=(2222)_{4}\text { for }k\ge 4, \end{aligned}$$

and

$$P_{5}^{(3)}P_{2}^{(3)}=\left( 66\right) _{10}.$$
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Afrika Matematika
Afrika Matematika MATHEMATICS-
CiteScore
2.00
自引率
9.10%
发文量
96
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信