{"title":"关于修饰部分Brauer代数的半简单性","authors":"Amani M. Alfadhli","doi":"10.1007/s13370-025-01386-7","DOIUrl":null,"url":null,"abstract":"<div><p>The decorated Partial Brauer algebras are finite dimensional diagram algebras contain Brauer algebras, Partial Brauer algebras and the group algebras <span>\\(R\\widetilde{S_{n}}\\)</span>, where <span>\\(\\widetilde{S_{n}}\\)</span> is the wreath product group <span>\\(\\mathbb {Z}_{2}\\wr S_{n}\\)</span> of <span>\\(\\mathbb {Z}_{2}\\)</span> with <span>\\(S_{n}\\)</span>. In this paper, we study the semisimplicity criterion of the decorated partial Brauer algebras using two functors <i>F</i> and <i>G</i>. In particular, we determine for which value of the parameters this algebra is semisimple. This result can be considered as a generalization of Hanlon–Wales conjecture on Brauer algebra.</p></div>","PeriodicalId":46107,"journal":{"name":"Afrika Matematika","volume":"36 4","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the semisimplicity of the decorated partial Brauer algebras\",\"authors\":\"Amani M. Alfadhli\",\"doi\":\"10.1007/s13370-025-01386-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The decorated Partial Brauer algebras are finite dimensional diagram algebras contain Brauer algebras, Partial Brauer algebras and the group algebras <span>\\\\(R\\\\widetilde{S_{n}}\\\\)</span>, where <span>\\\\(\\\\widetilde{S_{n}}\\\\)</span> is the wreath product group <span>\\\\(\\\\mathbb {Z}_{2}\\\\wr S_{n}\\\\)</span> of <span>\\\\(\\\\mathbb {Z}_{2}\\\\)</span> with <span>\\\\(S_{n}\\\\)</span>. In this paper, we study the semisimplicity criterion of the decorated partial Brauer algebras using two functors <i>F</i> and <i>G</i>. In particular, we determine for which value of the parameters this algebra is semisimple. This result can be considered as a generalization of Hanlon–Wales conjecture on Brauer algebra.</p></div>\",\"PeriodicalId\":46107,\"journal\":{\"name\":\"Afrika Matematika\",\"volume\":\"36 4\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Afrika Matematika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13370-025-01386-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Afrika Matematika","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s13370-025-01386-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
On the semisimplicity of the decorated partial Brauer algebras
The decorated Partial Brauer algebras are finite dimensional diagram algebras contain Brauer algebras, Partial Brauer algebras and the group algebras \(R\widetilde{S_{n}}\), where \(\widetilde{S_{n}}\) is the wreath product group \(\mathbb {Z}_{2}\wr S_{n}\) of \(\mathbb {Z}_{2}\) with \(S_{n}\). In this paper, we study the semisimplicity criterion of the decorated partial Brauer algebras using two functors F and G. In particular, we determine for which value of the parameters this algebra is semisimple. This result can be considered as a generalization of Hanlon–Wales conjecture on Brauer algebra.