非厄米XY模型中的异常点环和\(\mathcal{P}\mathcal{T}\) -对称

IF 5.9
Robert A. Henry, D. C. Liu, Murray T. Batchelor
{"title":"非厄米XY模型中的异常点环和\\(\\mathcal{P}\\mathcal{T}\\) -对称","authors":"Robert A. Henry,&nbsp;D. C. Liu,&nbsp;Murray T. Batchelor","doi":"10.1007/s43673-025-00170-w","DOIUrl":null,"url":null,"abstract":"<div><p>The XY spin chain is a paradigmatic example of a model solved by free fermions, in which the energy eigenspectrum is built from combinations of quasi-energies. In this article, we show that by extending the XY model’s anisotropy parameter <span>\\(\\lambda\\)</span> to complex values, it is possible for two of the quasi-energies to become degenerate. In the non-Hermitian XY model, these quasi-energy degeneracies give rise to exceptional points (EPs) where eigenvalues and their corresponding eigenvectors coalesce. The distinct <span>\\(\\lambda\\)</span> values at which EPs appear form concentric rings in the complex plane which are shown in the infinite system size limit to converge to the unit circle coinciding with the boundary between distinct topological phases. The non-Hermitian model is also seen to possess a line of broken <span>\\(\\mathcal{P}\\mathcal{T}\\)</span> symmetry along the pure imaginary <span>\\(\\lambda\\)</span>-axis. For finite systems, there are four EP values on this broken <span>\\(\\mathcal{P}\\mathcal{T}\\)</span>-symmetric line if the system size is a multiple of 4.</p></div>","PeriodicalId":100007,"journal":{"name":"AAPPS Bulletin","volume":"35 1","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43673-025-00170-w.pdf","citationCount":"0","resultStr":"{\"title\":\"Exceptional point rings and \\\\(\\\\mathcal{P}\\\\mathcal{T}\\\\)-symmetry in the non-Hermitian XY model\",\"authors\":\"Robert A. Henry,&nbsp;D. C. Liu,&nbsp;Murray T. Batchelor\",\"doi\":\"10.1007/s43673-025-00170-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The XY spin chain is a paradigmatic example of a model solved by free fermions, in which the energy eigenspectrum is built from combinations of quasi-energies. In this article, we show that by extending the XY model’s anisotropy parameter <span>\\\\(\\\\lambda\\\\)</span> to complex values, it is possible for two of the quasi-energies to become degenerate. In the non-Hermitian XY model, these quasi-energy degeneracies give rise to exceptional points (EPs) where eigenvalues and their corresponding eigenvectors coalesce. The distinct <span>\\\\(\\\\lambda\\\\)</span> values at which EPs appear form concentric rings in the complex plane which are shown in the infinite system size limit to converge to the unit circle coinciding with the boundary between distinct topological phases. The non-Hermitian model is also seen to possess a line of broken <span>\\\\(\\\\mathcal{P}\\\\mathcal{T}\\\\)</span> symmetry along the pure imaginary <span>\\\\(\\\\lambda\\\\)</span>-axis. For finite systems, there are four EP values on this broken <span>\\\\(\\\\mathcal{P}\\\\mathcal{T}\\\\)</span>-symmetric line if the system size is a multiple of 4.</p></div>\",\"PeriodicalId\":100007,\"journal\":{\"name\":\"AAPPS Bulletin\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2025-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s43673-025-00170-w.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AAPPS Bulletin\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s43673-025-00170-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AAPPS Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s43673-025-00170-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

XY自旋链是自由费米子求解模型的一个典型例子,其中能量特征谱是由准能量组合建立的。在本文中,我们证明了通过将XY模型的各向异性参数\(\lambda\)扩展到复数值,两个准能量可能变得简并。在非厄米的XY模型中,这些准能量简并产生异常点(EPs),其中特征值与其对应的特征向量合并。EPs出现的不同\(\lambda\)值在复平面上形成同心圆,在无限系统尺寸极限中显示为收敛于与不同拓扑相边界重合的单位圆。非厄米模型也被认为沿纯虚的\(\lambda\)轴具有一条断裂的\(\mathcal{P}\mathcal{T}\)对称线。对于有限系统,如果系统大小是4的倍数,则在这条断裂的\(\mathcal{P}\mathcal{T}\)对称线上有四个EP值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exceptional point rings and \(\mathcal{P}\mathcal{T}\)-symmetry in the non-Hermitian XY model

The XY spin chain is a paradigmatic example of a model solved by free fermions, in which the energy eigenspectrum is built from combinations of quasi-energies. In this article, we show that by extending the XY model’s anisotropy parameter \(\lambda\) to complex values, it is possible for two of the quasi-energies to become degenerate. In the non-Hermitian XY model, these quasi-energy degeneracies give rise to exceptional points (EPs) where eigenvalues and their corresponding eigenvectors coalesce. The distinct \(\lambda\) values at which EPs appear form concentric rings in the complex plane which are shown in the infinite system size limit to converge to the unit circle coinciding with the boundary between distinct topological phases. The non-Hermitian model is also seen to possess a line of broken \(\mathcal{P}\mathcal{T}\) symmetry along the pure imaginary \(\lambda\)-axis. For finite systems, there are four EP values on this broken \(\mathcal{P}\mathcal{T}\)-symmetric line if the system size is a multiple of 4.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信