Óscar Escudero-Arnanz;Cristina Soguero-Ruiz;Antonio G. Marques
{"title":"不规则多变量时间序列的可解释时空gcnn:架构及其在ICU患者数据中的应用","authors":"Óscar Escudero-Arnanz;Cristina Soguero-Ruiz;Antonio G. Marques","doi":"10.1109/TSIPN.2025.3613951","DOIUrl":null,"url":null,"abstract":"In this paper, we present XST-GCNN (eXplainable Spatio-Temporal Graph Convolutional Neural Network), an innovative architecture designed for processing heterogeneous and irregular Multivariate Time Series (MTS) data. Our processing architecture captures both temporal and feature dependencies within a unified spatio-temporal pipeline by leveraging a GCNN that uses a spatio-temporal graph and aims at optimizing predictive performance and explainability. For graph estimation, we propose several techniques, including a novel approach based on the (heterogeneous) Gower distance. Once the graphs are estimated, we propose two approaches for graph construction: one based on the Cartesian product that treats temporal instants homogeneously, and a spatio-temporal approach that considers different graphs per time step. Finally, we propose two GCNN architectures: a standard GCNN with a normalized adjacency matrix and a higher-order polynomial GCNN. In addition to predictive performance, we incorporate intrinsic explainability through architectural design choices, complemented by post hoc analysis using GNNExplainer, aimed at identifying key feature-time combinations that drive the model’s predictions. We evaluate XST-GCNN using real-world Electronic Health Record data from the University Hospital of Fuenlabrada to predict Multidrug Resistance (MDR) in Intensive Care Unit patients, a critical healthcare challenge associated with high mortality and complex treatments. Our architecture outperforms traditional models, achieving a mean Receiver Operating Characteristic Area Under the Curve score of <inline-formula><tex-math>$\\mathbf{81.03} \\pm \\mathbf{2.43}$</tex-math></inline-formula>. Additionally, the explainability analysis provides actionable insights into clinical factors driving MDR predictions, enhancing model transparency and trust. This work sets a new benchmark for addressing complex inference tasks with heterogeneous and irregular MTS, offering a versatile and interpretable solution for real-world applications.","PeriodicalId":56268,"journal":{"name":"IEEE Transactions on Signal and Information Processing over Networks","volume":"11 ","pages":"1286-1301"},"PeriodicalIF":3.0000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11178245","citationCount":"0","resultStr":"{\"title\":\"Explainable Spatio-Temporal GCNNs for Irregular Multivariate Time Series: Architecture and Application to ICU Patient Data\",\"authors\":\"Óscar Escudero-Arnanz;Cristina Soguero-Ruiz;Antonio G. Marques\",\"doi\":\"10.1109/TSIPN.2025.3613951\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present XST-GCNN (eXplainable Spatio-Temporal Graph Convolutional Neural Network), an innovative architecture designed for processing heterogeneous and irregular Multivariate Time Series (MTS) data. Our processing architecture captures both temporal and feature dependencies within a unified spatio-temporal pipeline by leveraging a GCNN that uses a spatio-temporal graph and aims at optimizing predictive performance and explainability. For graph estimation, we propose several techniques, including a novel approach based on the (heterogeneous) Gower distance. Once the graphs are estimated, we propose two approaches for graph construction: one based on the Cartesian product that treats temporal instants homogeneously, and a spatio-temporal approach that considers different graphs per time step. Finally, we propose two GCNN architectures: a standard GCNN with a normalized adjacency matrix and a higher-order polynomial GCNN. In addition to predictive performance, we incorporate intrinsic explainability through architectural design choices, complemented by post hoc analysis using GNNExplainer, aimed at identifying key feature-time combinations that drive the model’s predictions. We evaluate XST-GCNN using real-world Electronic Health Record data from the University Hospital of Fuenlabrada to predict Multidrug Resistance (MDR) in Intensive Care Unit patients, a critical healthcare challenge associated with high mortality and complex treatments. Our architecture outperforms traditional models, achieving a mean Receiver Operating Characteristic Area Under the Curve score of <inline-formula><tex-math>$\\\\mathbf{81.03} \\\\pm \\\\mathbf{2.43}$</tex-math></inline-formula>. Additionally, the explainability analysis provides actionable insights into clinical factors driving MDR predictions, enhancing model transparency and trust. This work sets a new benchmark for addressing complex inference tasks with heterogeneous and irregular MTS, offering a versatile and interpretable solution for real-world applications.\",\"PeriodicalId\":56268,\"journal\":{\"name\":\"IEEE Transactions on Signal and Information Processing over Networks\",\"volume\":\"11 \",\"pages\":\"1286-1301\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11178245\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Signal and Information Processing over Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11178245/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Signal and Information Processing over Networks","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11178245/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Explainable Spatio-Temporal GCNNs for Irregular Multivariate Time Series: Architecture and Application to ICU Patient Data
In this paper, we present XST-GCNN (eXplainable Spatio-Temporal Graph Convolutional Neural Network), an innovative architecture designed for processing heterogeneous and irregular Multivariate Time Series (MTS) data. Our processing architecture captures both temporal and feature dependencies within a unified spatio-temporal pipeline by leveraging a GCNN that uses a spatio-temporal graph and aims at optimizing predictive performance and explainability. For graph estimation, we propose several techniques, including a novel approach based on the (heterogeneous) Gower distance. Once the graphs are estimated, we propose two approaches for graph construction: one based on the Cartesian product that treats temporal instants homogeneously, and a spatio-temporal approach that considers different graphs per time step. Finally, we propose two GCNN architectures: a standard GCNN with a normalized adjacency matrix and a higher-order polynomial GCNN. In addition to predictive performance, we incorporate intrinsic explainability through architectural design choices, complemented by post hoc analysis using GNNExplainer, aimed at identifying key feature-time combinations that drive the model’s predictions. We evaluate XST-GCNN using real-world Electronic Health Record data from the University Hospital of Fuenlabrada to predict Multidrug Resistance (MDR) in Intensive Care Unit patients, a critical healthcare challenge associated with high mortality and complex treatments. Our architecture outperforms traditional models, achieving a mean Receiver Operating Characteristic Area Under the Curve score of $\mathbf{81.03} \pm \mathbf{2.43}$. Additionally, the explainability analysis provides actionable insights into clinical factors driving MDR predictions, enhancing model transparency and trust. This work sets a new benchmark for addressing complex inference tasks with heterogeneous and irregular MTS, offering a versatile and interpretable solution for real-world applications.
期刊介绍:
The IEEE Transactions on Signal and Information Processing over Networks publishes high-quality papers that extend the classical notions of processing of signals defined over vector spaces (e.g. time and space) to processing of signals and information (data) defined over networks, potentially dynamically varying. In signal processing over networks, the topology of the network may define structural relationships in the data, or may constrain processing of the data. Topics include distributed algorithms for filtering, detection, estimation, adaptation and learning, model selection, data fusion, and diffusion or evolution of information over such networks, and applications of distributed signal processing.