Haiyan Yang, Jun Wang, Sheng Li, Di Zhou, Xingwei Chen, Juncheng Li, Yufeng Hua, Jun Shi
{"title":"基于预训练对比语言-音频编码器的协同变压器原型网络用于开放集音频识别","authors":"Haiyan Yang, Jun Wang, Sheng Li, Di Zhou, Xingwei Chen, Juncheng Li, Yufeng Hua, Jun Shi","doi":"10.1109/tsp.2025.3616585","DOIUrl":null,"url":null,"abstract":"","PeriodicalId":13330,"journal":{"name":"IEEE Transactions on Signal Processing","volume":"87 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Collaborative Transformer Prototype Network with Pretrained Contrastive Language-Audio Encoder for Open Set Audio Recognition\",\"authors\":\"Haiyan Yang, Jun Wang, Sheng Li, Di Zhou, Xingwei Chen, Juncheng Li, Yufeng Hua, Jun Shi\",\"doi\":\"10.1109/tsp.2025.3616585\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\",\"PeriodicalId\":13330,\"journal\":{\"name\":\"IEEE Transactions on Signal Processing\",\"volume\":\"87 1\",\"pages\":\"\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2025-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1109/tsp.2025.3616585\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/tsp.2025.3616585","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
期刊介绍:
The IEEE Transactions on Signal Processing covers novel theory, algorithms, performance analyses and applications of techniques for the processing, understanding, learning, retrieval, mining, and extraction of information from signals. The term “signal” includes, among others, audio, video, speech, image, communication, geophysical, sonar, radar, medical and musical signals. Examples of topics of interest include, but are not limited to, information processing and the theory and application of filtering, coding, transmitting, estimating, detecting, analyzing, recognizing, synthesizing, recording, and reproducing signals.