Livy Laysandra, Dinda Bazliah, Daniel Muara Sentosa, Ayu Cahyarani Heksa, Hai Khue Bui, Yu-Cheng Li, Yu-Cheng Chiu
{"title":"新一代晶体管技术中类橡胶合成聚合物的兴起","authors":"Livy Laysandra, Dinda Bazliah, Daniel Muara Sentosa, Ayu Cahyarani Heksa, Hai Khue Bui, Yu-Cheng Li, Yu-Cheng Chiu","doi":"10.1039/d5sc05680b","DOIUrl":null,"url":null,"abstract":"Integrating rubber-like synthetic polymers into next-generation transistor technologies offers a transformative approach to advancing wearable electronics, positioning these elastomers as ideal substrates and essential companions to conjugated polymers and other active materials. From six distinct types of rubber-like synthetic polymers, this review spotlights polydimethylsiloxane (PDMS) and styrene-ethylene-butylene-styrene (SEBS) as the leading elastomeric polymers propelling wearable transistor innovations. PDMS is highly favored for its exceptional mechanical flexibility, high electrical resistivity, optical transparency, biocompatibility, and compatibility with soft lithography techniques, making it an ideal substrate for skin-like electronics. SEBS stands out as an elastomeric substrate for soft sensor integration due to its unique ability to form nanoconfined and phase-separated layers with semiconducting polymers that maintain high charge mobility under mechanical strain, while its tissue-like softness and mechanical compliance ensure comfort, durability, and suitability for advanced large-area flexible electronics. A comprehensive overview of recent progress in incorporating these elastomers is discussed, ranging from individual layers to fully integrated components into transistor devices. By bridging polymer chemistry with device engineering, it outlines a strategic research roadmap for developing tunable multifunctional rubber-like synthetic polymers to meet the complex performance requirements of emerging wearable transistor technologies. Finally, key technical challenges are identified alongside potential future research directions to support the development of next-generation wearable transistor applications.","PeriodicalId":9909,"journal":{"name":"Chemical Science","volume":"122 1","pages":""},"PeriodicalIF":7.4000,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Rise of Rubber-Like Synthetic Polymers in Next-Gen Transistor Technologies\",\"authors\":\"Livy Laysandra, Dinda Bazliah, Daniel Muara Sentosa, Ayu Cahyarani Heksa, Hai Khue Bui, Yu-Cheng Li, Yu-Cheng Chiu\",\"doi\":\"10.1039/d5sc05680b\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Integrating rubber-like synthetic polymers into next-generation transistor technologies offers a transformative approach to advancing wearable electronics, positioning these elastomers as ideal substrates and essential companions to conjugated polymers and other active materials. From six distinct types of rubber-like synthetic polymers, this review spotlights polydimethylsiloxane (PDMS) and styrene-ethylene-butylene-styrene (SEBS) as the leading elastomeric polymers propelling wearable transistor innovations. PDMS is highly favored for its exceptional mechanical flexibility, high electrical resistivity, optical transparency, biocompatibility, and compatibility with soft lithography techniques, making it an ideal substrate for skin-like electronics. SEBS stands out as an elastomeric substrate for soft sensor integration due to its unique ability to form nanoconfined and phase-separated layers with semiconducting polymers that maintain high charge mobility under mechanical strain, while its tissue-like softness and mechanical compliance ensure comfort, durability, and suitability for advanced large-area flexible electronics. A comprehensive overview of recent progress in incorporating these elastomers is discussed, ranging from individual layers to fully integrated components into transistor devices. By bridging polymer chemistry with device engineering, it outlines a strategic research roadmap for developing tunable multifunctional rubber-like synthetic polymers to meet the complex performance requirements of emerging wearable transistor technologies. Finally, key technical challenges are identified alongside potential future research directions to support the development of next-generation wearable transistor applications.\",\"PeriodicalId\":9909,\"journal\":{\"name\":\"Chemical Science\",\"volume\":\"122 1\",\"pages\":\"\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2025-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1039/d5sc05680b\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5sc05680b","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
The Rise of Rubber-Like Synthetic Polymers in Next-Gen Transistor Technologies
Integrating rubber-like synthetic polymers into next-generation transistor technologies offers a transformative approach to advancing wearable electronics, positioning these elastomers as ideal substrates and essential companions to conjugated polymers and other active materials. From six distinct types of rubber-like synthetic polymers, this review spotlights polydimethylsiloxane (PDMS) and styrene-ethylene-butylene-styrene (SEBS) as the leading elastomeric polymers propelling wearable transistor innovations. PDMS is highly favored for its exceptional mechanical flexibility, high electrical resistivity, optical transparency, biocompatibility, and compatibility with soft lithography techniques, making it an ideal substrate for skin-like electronics. SEBS stands out as an elastomeric substrate for soft sensor integration due to its unique ability to form nanoconfined and phase-separated layers with semiconducting polymers that maintain high charge mobility under mechanical strain, while its tissue-like softness and mechanical compliance ensure comfort, durability, and suitability for advanced large-area flexible electronics. A comprehensive overview of recent progress in incorporating these elastomers is discussed, ranging from individual layers to fully integrated components into transistor devices. By bridging polymer chemistry with device engineering, it outlines a strategic research roadmap for developing tunable multifunctional rubber-like synthetic polymers to meet the complex performance requirements of emerging wearable transistor technologies. Finally, key technical challenges are identified alongside potential future research directions to support the development of next-generation wearable transistor applications.
期刊介绍:
Chemical Science is a journal that encompasses various disciplines within the chemical sciences. Its scope includes publishing ground-breaking research with significant implications for its respective field, as well as appealing to a wider audience in related areas. To be considered for publication, articles must showcase innovative and original advances in their field of study and be presented in a manner that is understandable to scientists from diverse backgrounds. However, the journal generally does not publish highly specialized research.