Lei Wu, Kaixi Lan, Yaocheng Han, Yanting Zhang, Yian Shi, Dongyang Han, Kun Zhang, Manni Li
{"title":"膜状MOF质子导体","authors":"Lei Wu, Kaixi Lan, Yaocheng Han, Yanting Zhang, Yian Shi, Dongyang Han, Kun Zhang, Manni Li","doi":"10.1039/d5qi01763g","DOIUrl":null,"url":null,"abstract":"The escalating global energy demand has spurred intensive research into alternative energy technologies, among which proton-exchange membrane fuel cells (PEMFCs) stand out for their high efficiency and environmental benignity. However, conventional proton conductors like Nafion® face critical limitations, including water-dependent conductivity, high production costs, and poor performance under high-temperature/low-humidity conditions. Metal-organic frameworks (MOFs), with their tunable structures, high porosity, and diverse functionalization, have emerged as promising candidates to overcome these challenges. This review systematically summarizes the recent progress in membrane-shaped MOF proton conductors, focusing on three mainstream fabrication strategies: MOF-polymer blend membranes, MOF glass membranes, and substrate-deposited MOF films. The proton conduction mechanisms, structural design principles, and performance optimization strategies for each type are discussed. Additionally, the current challenges and future perspectives in advancing MOF-based membranes for practical PEMFC applications are highlighted.","PeriodicalId":79,"journal":{"name":"Inorganic Chemistry Frontiers","volume":"114 1","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Membrane-Shaped MOF Proton Conductors\",\"authors\":\"Lei Wu, Kaixi Lan, Yaocheng Han, Yanting Zhang, Yian Shi, Dongyang Han, Kun Zhang, Manni Li\",\"doi\":\"10.1039/d5qi01763g\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The escalating global energy demand has spurred intensive research into alternative energy technologies, among which proton-exchange membrane fuel cells (PEMFCs) stand out for their high efficiency and environmental benignity. However, conventional proton conductors like Nafion® face critical limitations, including water-dependent conductivity, high production costs, and poor performance under high-temperature/low-humidity conditions. Metal-organic frameworks (MOFs), with their tunable structures, high porosity, and diverse functionalization, have emerged as promising candidates to overcome these challenges. This review systematically summarizes the recent progress in membrane-shaped MOF proton conductors, focusing on three mainstream fabrication strategies: MOF-polymer blend membranes, MOF glass membranes, and substrate-deposited MOF films. The proton conduction mechanisms, structural design principles, and performance optimization strategies for each type are discussed. Additionally, the current challenges and future perspectives in advancing MOF-based membranes for practical PEMFC applications are highlighted.\",\"PeriodicalId\":79,\"journal\":{\"name\":\"Inorganic Chemistry Frontiers\",\"volume\":\"114 1\",\"pages\":\"\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2025-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inorganic Chemistry Frontiers\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1039/d5qi01763g\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry Frontiers","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5qi01763g","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
The escalating global energy demand has spurred intensive research into alternative energy technologies, among which proton-exchange membrane fuel cells (PEMFCs) stand out for their high efficiency and environmental benignity. However, conventional proton conductors like Nafion® face critical limitations, including water-dependent conductivity, high production costs, and poor performance under high-temperature/low-humidity conditions. Metal-organic frameworks (MOFs), with their tunable structures, high porosity, and diverse functionalization, have emerged as promising candidates to overcome these challenges. This review systematically summarizes the recent progress in membrane-shaped MOF proton conductors, focusing on three mainstream fabrication strategies: MOF-polymer blend membranes, MOF glass membranes, and substrate-deposited MOF films. The proton conduction mechanisms, structural design principles, and performance optimization strategies for each type are discussed. Additionally, the current challenges and future perspectives in advancing MOF-based membranes for practical PEMFC applications are highlighted.